Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YANG Xiuzhi, JIANG Yuhui, WANG Xingdong, WANG Zihan. Accuracy detection and error compensation analysis of NC machine tools based on linear regression theory[J]. Manufacturing Technology & Machine Tool, 2022, (1): 171-176. doi: 10.19287/j.cnki.1005-2402.2021.09.031
Citation: YANG Xiuzhi, JIANG Yuhui, WANG Xingdong, WANG Zihan. Accuracy detection and error compensation analysis of NC machine tools based on linear regression theory[J]. Manufacturing Technology & Machine Tool, 2022, (1): 171-176. doi: 10.19287/j.cnki.1005-2402.2021.09.031

Accuracy detection and error compensation analysis of NC machine tools based on linear regression theory

doi: 10.19287/j.cnki.1005-2402.2021.09.031
Funds:

 51875418

 GF201906

 201941

  • Received Date: 2021-01-11
    Available Online: 2022-03-07
  • In order to improve the positioning accuracy of NC machine tool, the error source of machine tool precision should be analyzed and compensated. The principle of precision detection and compensation of numerical control machine tool based on linear regression theory with laser interferometer is discussed. The model of data detection is established. The characteristics of each error point are analyzed. The methods of one-time linear compensation and multistage linear compensation are determined and verified by comparison. Based on the analysis of a numerical control machine tool, the error compensation is realized according to the experimental data. Finally, the compensation effect of positioning accuracy is analyzed. The results show that the accuracy of X axis is increased from 4.853 1 ~35.025 0μm to -2.472 1 ~0.736 3 μm by linear compensation. The precision of Y-axis was improved from -14.425 0 ~-4.132 5μm to -2.481 2 ~0.752 9μm. The accuracy of Z-axis was improved from -4.128 0 ~17.227 1μm to -0.501 5~1.324 5μm. The precision of X axis was improved to -1.364 1 ~0.484 0μm by multi-stage linear compensation. The precision of Y-axis was improved to -1.364 1 ~0.551 0μm. The accuracy of Z-axis is improved to -0.412 0 ~0.495 2μm. Before compensation, according to the main characteristics of data distribution, the linear or segmented compensation for the system error of CNC machine tools has a good compensation effect.

     

  • loading
  • [1]
    黄明辉, 王晗, 陈新, 等. 光栅尺测量精度误差补偿系统研究[J]. 组合机床与自动化加工技术, 2017(12): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201712020.htm
    [2]
    李建东. 基于激光跟踪仪的数控机床空间误差补偿技术研究及应用[D]. 成都: 电子科技大学, 2018.
    [3]
    杨闪闪, 王玲, 廖启豪, 等. 基于径向基函数法的五轴数控机床空间动态性能研究[J]. 机械工程学报, 2019, 55(9): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201909017.htm
    [4]
    Xiao L, Wei L, Yi P, et al. Monocular-vision-based contouring error detection and compensation for CNC machine tools[J]. Precision Engineering, 2019, 55: 447-463. doi: 10.1016/j.precisioneng.2018.10.015
    [5]
    张伟, 陈鹏, 潘爱金, 等. 数控机床误差检测及补偿技术研究进展[J]. 机床与液压, 2019, 47(17): 198-205. doi: 10.3969/j.issn.1001-3881.2019.17.038
    [6]
    涂怡蓉, 陈秀梅, 史晨阳, 等. 数控机床主轴的神经网络热评价模型研究[J]. 机床与液压, 2020, 48(22): 24-28. doi: 10.3969/j.issn.1001-3881.2020.22.005
    [7]
    Zhi H L, Gang L, Wen T N, et al. Fast test and evaluation method for online dynamic performances of feed drive system of CNC machine tool[J]. Advanced Materials Research. 2013, 2107: 232-236.
    [8]
    张跃明, 杨申春, 褚迅迅, 等. 齿轮磨床精度检测与螺距补偿方法[J]. 机床与液压, 2017, 45(13): 33-36. doi: 10.3969/j.issn.1001-3881.2017.13.008
    [9]
    陈芳. 结合3D测头和宏程序实现机床定位精度自动测量[J]. 组合机床与自动化加工技术, 2016(10): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201610032.htm
    [10]
    李桂花, 孙绍彬. 基于微平面法的空间曲面在线检测的研究[J]. 组合机床与自动化加工技术, 2008(8): 68-74. doi: 10.3969/j.issn.1001-2265.2008.08.019
    [11]
    Yang S, Wang L, Liao Q, et al. Study on the spatial dynamic performance of five-axis NC machine tool based on radial basis function method(Article)[J]. Journal of Mechanical Engineering, 2019, 55(9): 144-153. doi: 10.3901/JME.2019.09.144
    [12]
    Xiao L, Wei L, Yi P, et al. Monocular-vision-based contouring error detection and compensation for CNC machine tools[J]. Precision Engineering, 2019, 55: 447-463. doi: 10.1016/j.precisioneng.2018.10.015
    [13]
    陈芳. 基于步距规的机床精度自动检测控制系统设计[J]. 组合机床与自动化加工技术, 2014(6): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201406021.htm
    [14]
    孙兴伟, 张春堂, 张兴伟, 等. 数控机床定位精度检测及补偿方法的研究[J]. 机床与液压, 2014, 42(23): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201423026.htm
    [15]
    张建成, 张之敬, 张虎, 等. 可重配置机床精度测量和补偿方法研究[J]. 机床与液压, 2008, 36(12): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200812007.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (439) PDF downloads(274) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return