Issue 12
Dec.  2022
Turn off MathJax
Article Contents
SUN Haijiang, XING Fei, BIAN Hongyou, SUO Hongbo, DONG Cheng, MIAO Liguo. Research status and progress of hybrid additive manufacturing technology[J]. Manufacturing Technology & Machine Tool, 2022, (12): 15-23. doi: 10.19287/j.mtmt.1005-2402.2022.12.003
Citation: SUN Haijiang, XING Fei, BIAN Hongyou, SUO Hongbo, DONG Cheng, MIAO Liguo. Research status and progress of hybrid additive manufacturing technology[J]. Manufacturing Technology & Machine Tool, 2022, (12): 15-23. doi: 10.19287/j.mtmt.1005-2402.2022.12.003

Research status and progress of hybrid additive manufacturing technology

doi: 10.19287/j.mtmt.1005-2402.2022.12.003
  • Received Date: 2022-07-28
  • The dimensional and geometric accuracy and surface quality of complex parts produced by additive manufacturing require secondary processing because they do not meet the requirements for direct application,which restricts the further development of metal additive manufacturing technology in the aerospace industry and other fields, and additive-reduction hybrid manufacturing is the most effective solution to break through the technical bottleneck. Firstly, the principle of hybrid additive and subtractive manufacturing technology is explained, the research status of domestic and foreign additive and subtractive materials is reviewed in terms of equipment integration and process research, the process parameters and defect detection of hybrid additive and subtractive manufacturing are introduced, the key technical difficulties of hybrid additive and subtractive manufacturing are pointed out and the direction of development is indicated.

     

  • loading
  • [1]
    Lorenz K A, Jones J B, Wimpenny D I, et al. A review of hybrid manufacturing[C]. 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2015.
    [2]
    任慧娇, 周冠男, 从保强, 等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术, 2020, 63(10): 72-77.
    [3]
    杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.
    [4]
    Kumbhar N N, Mulay A V. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review[J]. Journal of The Institution of Engineers (India):Series C, 2018, 99(4): 481-487. doi: 10.1007/s40032-016-0340-z
    [5]
    Zhu Z, Dhokia V G, Nassehi A, et al. A review of hybrid manufacturing processes–state of the art and future perspectives[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(7): 596-615.
    [6]
    Du W, Bai Q, Zhang B. A novel method for additive/subtractive hybrid manufacturing of metallic parts[J]. Procedia Manufacturing, 2016, 5: 1018-1030. doi: 10.1016/j.promfg.2016.08.067
    [7]
    Weiss L E, Merz R, Prinz F B, et al. Shape deposition manufacturing of heterogeneous structures[J]. Journal of Manufacturing Systems, 1997, Manufacturing, 2013, 26(7): 596-615.
    [8]
    Chang Y C, Pinilla J M, Kao J H, et al. Automated layer decomposition for additive/subtractive solid freeform fabrication[C]. 1999 International Solid Freeform Fabrication Symposium, 1999.
    [9]
    Himmer T, Techel A, Nowotny S. Recent developments in metal laminated tooling by multiple laser processing[J]. Rapid Prototyping Journal, 2003, 9(1): 24-29. doi: 10.1108/13552540310455629
    [10]
    Ren L, Padathu A P, Ruan J, et al. Three dimensional die repair using a hybrid manufacturing system[J]. Solid Freeform Fabrication Symposium, 2006(2006): 51-59.
    [11]
    Ren L, Eiamsa-ard K, Ruan J Z, et al. Part repairing using a hybrid manufacturing system[C]. ASME 2007 International Manufacturing Science and Engineering Conference, 2007.
    [12]
    Sitthi-Amorn P, Ramos J E, Wangy Y, et al. Multi fab: a machine vision assisted platform for multi-material 3D printing[J]. ACM Transactions on Graphics, 2015, 4(4): 129.1-129.11.
    [13]
    Ye Z P, Zhang Z J, Jin X, et al. Study of hybrid additive manufacturing based on pulse laser wire depositing and milling[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 2237-2248. doi: 10.1007/s00170-016-8894-8
    [14]
    刘肖肖, 吕福顺, 刘原勇, 等. 一种增材与减材复合制造机研究[J]. 制造技术与机床, 2017(6): 49-52.
    [15]
    郭观林. 金属激光增减材复合工艺及整机结构CAE分析[D]. 长沙: 湖南大学, 2017.
    [16]
    孔刘伟, 王振忠, 叶超, 等. 五轴增减材混合加工中心集成开发技术研究[J]. 航空制技术, 2019, 62(6): 53-59.
    [17]
    孙传圣. 覆膜砂增减材混合制造方法及工艺[D]. 大连: 大连理工大学, 2019.
    [18]
    Lukas Löber, Christoph Flache, Romy Petters, et al. Comparison of different post processing technologies for SLM generated 316L steel parts[J] Rapid Prototyping Journal, 2013, 19, (3): 173-179.
    [19]
    Beaucamp A T, Namba Y, Charlton P, et al. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)[J]. Surface Topography:Metrology and Properties, 2015, 3(2): 024001. doi: 10.1088/2051-672X/3/2/024001
    [20]
    Jeng J Y, Lin M C. Mold fabrication and modification using hybrid processes of selective laser cladding and milling[J]. Journal of Materials Processing Technology, 2001, 110(1): 98-103. doi: 10.1016/S0924-0136(00)00850-5
    [21]
    Xie Y, Tong J, Fu Y, et al. Machining scheme of aviation bearing bracket based on additive and subtractive hybrid manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3775-3790. doi: 10.1007/s12206-020-0829-5
    [22]
    章媛洁, 宋波, 赵晓, 等. 激光选区熔化增材与机加工复合制造 AISI 420 不锈钢: 表面粗糙度与残余应力演变规律研究[J]. 机械工程学报, 2018,54(13): 170-178.
    [23]
    张军涛, 张伟, 李宇佳, 等. 基于DMG MORI LASERTEC 65 3D加工中心的不锈钢粉末激光沉积增/减材混合制造[J]. 粉末冶金材料科学与工程, 2018, 23(4): 368-374. doi: 10.3969/j.issn.1673-0224.2018.04.005
    [24]
    郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D]. 济南: 山东大学, 2017.
    [25]
    Yang Y Y, Gong Y D, Qu S S, et al. Densification, mechanical behaviors, and machining characteristics of 316L stainless steel in hybrid additive/subtractive manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2020, 107: 177-189. doi: 10.1007/s00170-020-05033-2
    [26]
    侯柯羽. 功能梯度结构件的增减材混合成型机理与实验研究[D]. 沈阳: 东北大学, 2020.
    [27]
    黄鑫. 钛合金增减材混合制造工艺研究[D]. 大连: 大连理工大学, 2017.
    [28]
    李帅. 增减材混合制造钛合金铣削特性研究[D]. 大连: 大连理工大学, 2018.
    [29]
    唐成铭, 赵吉宾, 田同同, 等. 基于激光选区熔化与高速切削的增减材混合制造系统开发[J/OL]. 热加工工艺, 2022(19): 118-122. [2022-05-06].
    [30]
    Spierings A B, Starr T L, Wegener K. Fatigue performance of additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94. doi: 10.1108/13552541311302932
    [31]
    陈曦. SLM成型件铣削表面粗糙度预测模型及参数优化研究[D]. 武汉: 武汉科技大学, 2018.
    [32]
    杜琛. 粉体材料增减材混合成形及表面涂覆工艺研究[D]. 大连: 大连理工大学, 2021.
    [33]
    陈峰, 宋长辉, 杨永强, 等. 送粉式激光增材和铣削减材混合制造316L不锈钢的表面质量及力学性能[J]. 激光与光电子学进, 2022, 59(1): 268-274.
    [34]
    Heigel J C, Phan T Q, Fox J C, et al. Experimental investigation of residual stress and its impact on machining in hybrid additive/subtractive manufacturing[J]. Procedia Manufacturing, 2018, 26: 929-940. doi: 10.1016/j.promfg.2018.07.120
    [35]
    Zhang S, Zhang Y, Gao M, et al. Effects of milling thickness on wire deposition accuracy of hybrid additive/subtractive manufacturing[J]. Science and Technology of Welding and Joining, 2019, 24(5): 375-381. doi: 10.1080/13621718.2019.1595925
    [36]
    Karunakaran K P, Suryakumar S, Pushpa V, et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(5): 490-499. doi: 10.1016/j.rcim.2010.03.008
    [37]
    Song Y A, Park S, Chae S W. 3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1063-1069. doi: 10.1016/j.ijmachtools.2004.11.022
    [38]
    Zhang S, Gong M, Zeng X, et al. Residual stress and tensile anisotropy of hybrid wire arc additive-milling subtractive manufacturing[J]. Journal of Materials Processing Technology, 2021, 293: 117077. doi: 10.1016/j.jmatprotec.2021.117077
    [39]
    Mahmoudi M, Ezzat A A, Elwany A. Layer wise anomaly detection in laser powder-bed fusion metal additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2019, 141(3): 116-135.
    [40]
    Vandone A, Baraldo S, Valente A, et al. Vision-based melt pool monitoring system setup for additive manufacturing[J]. Procedia CIRP, 2019, 81: 747-752. doi: 10.1016/j.procir.2019.03.188
    [41]
    Kwon O, Kim H G, Ham M J, et al. A deep neural network for classification of melt-pool images in metal additive manufacturing[J]. Journal of Intelligent Manufacturing, 2020, 31(2): 375-386. doi: 10.1007/s10845-018-1451-6
    [42]
    Du W, Bai Q, Wang Y B, et al. Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2017, 95(5–8): 1-11.
    [43]
    王龙群. 基于增减材复合制造的内部缺陷涡流检测研究[D]. 大连: 大连理工大学, 2019.
    [44]
    Tamellini L, Chiumenti M, Altenhofen C, et al. Parametric shape optimization for combined additive-subtractive manufacturing[J]. JOM, 2020, 72(1): 448-457. doi: 10.1007/s11837-019-03886-x
    [45]
    Liu W, Wei H, Zhang M, et al. Energy consumption modeling of additive-subtractive hybrid manufacturing based on cladding head moving state and deposition efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11): 7755-7770.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (685) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return