Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LI Zongyou, GAO Chunyan, LV Xiaoling, ZHANG Minglu. A review of surface defect detection for metal materials based on deep learning[J]. Manufacturing Technology & Machine Tool, 2023, (6): 61-67. doi: 10.19287/j.mtmt.1005-2402.2023.06.011
Citation: LI Zongyou, GAO Chunyan, LV Xiaoling, ZHANG Minglu. A review of surface defect detection for metal materials based on deep learning[J]. Manufacturing Technology & Machine Tool, 2023, (6): 61-67. doi: 10.19287/j.mtmt.1005-2402.2023.06.011

A review of surface defect detection for metal materials based on deep learning

doi: 10.19287/j.mtmt.1005-2402.2023.06.011
  • Received Date: 2023-01-17
  • Accepted Date: 2023-03-13
  • Surface defect detection is a key part of product quality inspection, and with the rapid development of deep learning technology in recent years, the surface defect detection technology of metal materials has been greatly improved. This paper compares and analyzes the surface defect detection methods of metal materials based on deep learning in recent years, and discusses the status of research and application effects in recent years from three aspects: supervised methods, unsupervised methods, and weakly supervised methods. Finally, the key problems and solutions in the detection of surface defects in metal materials are systematically summarized. The further development of surface defect detection is considered and foreseen in the light of industrial needs.

     

  • loading
  • [1]
    Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012: 1097-1105.
    [2]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. ICLR 2015
    [3]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
    [4]
    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [5]
    Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017: 4700-4708.
    [6]
    Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017: 1704.04861.
    [7]
    Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
    [8]
    韩强, 张喆, 续欣莹, 等. 基于FF R-CNN钢材表面缺陷检测算法[J]. 太原理工大学学报, 2021, 52(5): 754-763.
    [9]
    于海涛, 李健升, 刘亚姣, 等. 基于级联神经网络的型钢表面缺陷检测算法[J/OL]. 计算机应用: 1-8[2022-08-04]. http://kns.cnki.net/kcms/detail/51.1307.tp.20220616.1610.004.html
    [10]
    布申申, 田怀文. 基于卷积神经网络的带钢表面缺陷检测算法[J]. 机械设计与制造, 2022(7): 29-33. doi: 10.3969/j.issn.1001-3997.2022.07.007
    [11]
    徐镪, 朱洪锦, 范洪辉, 等. 改进的YOLOv3网络在钢板表面缺陷检测研究[J]. 计算机工程与应用, 2020, 56(16): 265-272. doi: 10.3778/j.issn.1002-8331.2003-0232
    [12]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
    [13]
    He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [14]
    Girshick R. Fast r-cnn[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448.
    [15]
    Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [16]
    Dai J F, Li Y, He K M, et al. R-fcn: Object detection via region-based fully convolutional networks[J]. Advances in Neural Information Processing Systems, 2016, 29: 379-387.
    [17]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [18]
    Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]. European Conference on Computer Vision, 2016: 21-37.
    [19]
    吴越, 杨延竹, 苏雪龙, 等. 基于Faster R-CNN的钢板表面缺陷检测方法[J]. 东华大学学报:自然科学版, 2021, 47(3): 84-89.
    [20]
    李玉, 汤勃, 孙伟, 等. 基于改进Faster R-CNN的钢板表面缺陷检测[J]. 组合机床与自动化加工技术, 2022(5): 113-115,119.
    [21]
    张雪荣, 向峰, 李红军, 等. 基于深度学习的钢卷端面缺陷检测系统设计[J/OL]. 计算机集成制造系统: 1-19[2022-08-04]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220306.1105.002.html
    [22]
    杨莉, 张亚楠, 王婷婷, 等. 基于改进Faster R-CNN的钢材表面缺陷检测方法[J]. 吉林大学学报:信息科学版, 2021, 39(4): 409-415.
    [23]
    Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
    [24]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv: Computer Vision and Pattern Recognition, 2020: 1804.02767.
    [25]
    Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. ArXiv Preprint ArXiv, 2004.10934, 2020.
    [26]
    刘亚姣, 于海涛, 刘宝顺, 等. 基于YOLOv3的H型钢表面缺陷检测系统[J]. 河北工业科技, 2021, 38(3): 231-235. doi: 10.7535/hbgykj.2021yx03010
    [27]
    程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258. doi: 10.3778/j.issn.1002-8331.2104-0324
    [28]
    王紫玉, 张果, 杨奇, 等. 基于YOLOv4的铜带表面缺陷识别研究[J]. 光电子·激光, 2022, 33(2): 163-170. doi: 10.16136/j.joel.2022.02.0349
    [29]
    沈希忠, 吴迪. 基于YOLO的铝型材料表面小缺陷检测[J]. 浙江工业大学学报, 2022, 50(4): 372-380. doi: 10.3969/j.issn.1006-4303.2022.04.003
    [30]
    沈春光, 李虎威, 荆涛, 等. 基于深度学习的带钢表面缺陷检测在小样本数据集的应用[J]. 轧钢, 2022, 39(2): 82-86. doi: 10.13228/j.boyuan.issn1003-9996.20220214
    [31]
    王艳玲, 苏盈盈, 罗妤, 等. 基于SSD模型的钢带表面缺陷检测系统设计[J]. 重庆科技学院学报:自然科学版, 2021, 23(3): 95-98.
    [32]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
    [33]
    Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
    [34]
    He K, Gkioxari G, Dollar P, et al. Mask r-cnn[C]. Conference on Computer VisionProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2961-2969.
    [35]
    Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
    [36]
    李原, 李燕君, 刘进超, 等. 基于改进 Res-UNet 网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513-1520.
    [37]
    翁玉尚, 肖金球, 夏禹. 改进Mask R-CNN算法的带钢表面缺陷检测[J]. 计算机工程与应用, 2021, 57(19): 235-242. doi: 10.3778/j.issn.1002-8331.2010-0446
    [38]
    Hinton G E, Zemel R. Autoencoders, minimum description length and Helmholtz free energy[J]. Advances in Neural Information Processing Systems, 1994.
    [39]
    Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014.
    [40]
    唐善成, 陈明, 王瀚博, 等. 采用变分自编码器的无监督压敏电阻表面缺陷检测[J]. 计算机集成制造系统, 2022, 28(5): 1337-1351. doi: 10.13196/j.cims.2022.05.006
    [41]
    Liu K, Li A, Wen X, et al. Steel surface defect detection using GAN and one-class classifier[C]. 2019 25th International Conference on Automation and Computing (ICAC), 2019: 1-6.
    [42]
    何彧, 宋克臣, 张德富, 等. 融合多层级特征的弱监督钢板表面缺陷检测算法[J]. 东北大学学报:自然科学版, 2021, 42(5): 687-692.
    [43]
    Di H, Ke X, Peng Z, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics Lasers in Engineering, 2019, 117: 40-48. doi: 10.1016/j.optlaseng.2019.01.011
    [44]
    He Y, Song K, Dong H, et al. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network[J]. Optics Lasers in Engineering, 2019, 122: 294-302. doi: 10.1016/j.optlaseng.2019.06.020
    [45]
    Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv Preprint ArXiv: 1602.07360, 2016.
    [46]
    Han K, Wang Y, Tian Q, et al. Ghostnet: More features from cheap operations[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
    [47]
    Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2980-2988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (87) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return