Issue 6
Jun.  2023
Turn off MathJax
Article Contents
WANG Longhua, ZHAO Limei, CAO Zhen, HU Yuqi. Centerless grinding dynamic rounding model and numerical simulation[J]. Manufacturing Technology & Machine Tool, 2023, (6): 127-132. doi: 10.19287/j.mtmt.1005-2402.2023.06.021
Citation: WANG Longhua, ZHAO Limei, CAO Zhen, HU Yuqi. Centerless grinding dynamic rounding model and numerical simulation[J]. Manufacturing Technology & Machine Tool, 2023, (6): 127-132. doi: 10.19287/j.mtmt.1005-2402.2023.06.021

Centerless grinding dynamic rounding model and numerical simulation

doi: 10.19287/j.mtmt.1005-2402.2023.06.021
  • Received Date: 2023-02-08
  • In order to make a real and effective numerical simulation of the dynamic rounding process of the workpiece in the centerless grinding system and make a scientific and reasonable prediction of the final roundness of the workpiece, a dynamic rounding model of centerless grinding considering the instantaneous position change of the workpiece center is established and numerically simulated. Firstly, the influence of the center displacement of the workpiece caused by the change of the surface morphology of the workpiece during the grinding process and the center displacement of the workpiece caused by the vibration of the grinding system on the instantaneous position change of the workpiece center is analyzed. Then, considering the mutual coupling between the grinding wheel and the workpiece in the centerless grinding process and the material removal relationship, the dynamic rounding model of the workpiece grinding is established. Finally, the dynamic rounding model and the iterative algorithm for simulating the material removal and roundness change of the workpiece are used to simulate the dynamic rounding process of the workpiece, and the whole process of material removal and contour formation of the workpiece is reproduced. Through the analysis of the simulation results, the authenticity and rationality of the proposed centerless grinding dynamic rounding model and iterative algorithm are confirmed, which has certain guiding significance for the study of centerless grinding rounding process.

     

  • loading
  • [1]
    Yan Z B, Fan S J, Xu W P, et al. Profile evolution and cross-process collaboration strategy of bearing raceway by centerless grinding and electrochemical mechanical machining[J]. Micromachines, 2022, 14(1): 63. doi: 10.3390/mi14010063
    [2]
    Chakraborthy I, Vinay K, Nair S B. Rolling element bearing design through genetic algorithms[J]. Engineering Optimization, 2003, 35(6): 649-659. doi: 10.1080/03052150310001624403
    [3]
    Franciszek Orynski, Witold Pawolwski. The influence of grinding process on forced vibration domping in headstock of grinding wheel of cylindrical grinder[J]. International Journal of Machine Tools& Manufacture, 1999(39): 229-235.
    [4]
    Rowe W B, Miyashita M, Koenig W. Centerless grinding research and its application in advanced manufacturing technology[J]. Annals of the CIRP, 1989, 38(2): 1-9.
    [5]
    Rowe W B. Principles of modern grinding technology[M]. Oxford: William Andrew, 2009: 257-289.
    [6]
    Brecher C, Hannig S. Simulation of plunge centerless grinding processes[J]. Production Engineering-Research and Development, 2008, 2(1): 91-95. doi: 10.1007/s11740-007-0073-1
    [7]
    Chien A Y. The Harmonic vibration models in centerless grinding[J]. International Journal of Machine Tool Design and Research, 1986, 262(4): 349-358.
    [8]
    孙梅. 基于规则的无心磨削工艺智能优选辅助系统研究[D]. 长沙: 湖南大学, 2009.
    [9]
    陈建华. 轴颈外圆切入式磨削成圆过渡过程及圆度误差优化研究[D]. 长沙: 湖南大学, 2020.
    [10]
    李昭. 外圆磨削圆度误差形成机理及变化规律研究[D]. 长沙: 湖南大学, 2017.
    [11]
    Leonesio M, Bianchi G. Multistage centerless grinding setup via discrete mapping[J]. Journal of Manufacturing Processes, 2022, 80: 775-788. doi: 10.1016/j.jmapro.2022.06.040
    [12]
    Safarzadeh H, Monno M. Continuous multi-angle variation (CMAV) for faster roundness correction in centreless grinding[J]. The International Journal of Advanced Manufacturing Technology, 2022: 1-15.
    [13]
    王益平. 无心外圆磨振动特性分析与仿真研究[D]. 无锡: 江南大学, 2008.
    [14]
    崔奇, 丁辉, 程凯. 高精度无心磨削圆度保证和成圆过程解析[J]. 机床与液压, 2014, 42(11): 46-49,53. doi: 10.3969/j.issn.1001-3881.2014.11.012
    [15]
    崔奇. 高精度无心磨削成圆过程解析及其虚拟加工系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [16]
    喻道远, 段正澄, 邓建春, 等. 约束适应控制磨削过程的成圆机理分析[J]. 华中理工大学学报, 1994(7): 121-124.
    [17]
    熊万里, 陈建华, 丁文祥, 等. 轴颈外圆磨削成圆过程的双转子耦合模型及仿真算法[J]. 机械工程学报, 2019, 55(21): 170-177.
    [18]
    Klocke F, Friedrich D, Linke B. Basics for in-process roundness error improvement by a functional workrest blade[J]. Annals of the CIRP , 2004, 53 (1): 275–280.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (63) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return