基于MRE与特征类的轴承故障诊断方法

Bearing fault diagnosis method based on MRE and EigenClass

  • 摘要: 针对滚动轴承振动信号难以提取的问题,为实现故障特征准确分类目的。通过多尺度极差熵(MRE)和EigenClas融合,提出了一种MRE-EigenClass分类方法来诊断轴承故障模式。首先,MRE从不同状态下轴承的振动信号提取20个尺度的特征向量,最后将提取到的特征向量输入到EigenClass 分类器,得到分类结果。实验证明,提出的MRE与EigenClass算法能有效提取滚动轴承振动信号的特征,并且实现高精度分类。与其他故障识别的分类器相比,本方法具有更高的故障识别准确率,识别精度达到98.86%。

     

    Abstract: Aiming to extract the faint vibration signal from rolling bearing and classify extracted fault features, the paper fuses together multiscale range entropy (MRE) with EigenClas, and proposes a MRE-EigenClass method to diagnose bearing fault modes. Firstly, the MRE extracts the feature vectors with 20 scales from the vibration signals of bearings in different working states. Then, the extracted feature vectors are input into EigenClass classifier to obtain the final results. The experiments show that the proposed MRE-EigenClass algorithm can effectively extract the features of vibration signals and realize high-precision classification for rolling bearings. Compared with other fault classifiers, this method has the higher fault classification accuracy(98.86%).

     

/

返回文章
返回