Research on accurate modeling method of bearing joint based on sub region virtual material method
-
摘要: 针对滚动接触可动结合部虚拟材料模型未考虑滚动体与滚道接触应力分布不均的问题,提出了一种分区域虚拟材料结合部建模方法。以滚珠轴承为例,首先建立了可用于分析不同滚珠相位角处接触应力分布情况的滚珠轴承理论模型。然后,基于此模型获得的滚珠与滚道接触应力分布特性,采用分区域虚拟材料结合部模型等效表征非均匀接触特性,最终建立了考虑非均匀接触的滚珠轴承结合部虚拟材料模型。搭建了含不同尺寸滚珠轴承的主轴箱实验平台,通过试验验证此建模方法的有效性。结果表明:分区域虚拟材料结合部建模方法是一种表征滚珠与滚道接触应力分布不均的有效方法。Abstract: Aiming at the problem that the uneven distribution of contact stress between the rolling element and the raceway is not considered in the virtual material model of rolling contact movable joint, a method of virtual material joint modeling in different regions is proposed. Taking the ball bearing as an example, the theoretical model of ball bearing which can be used to analyze the contact stress distribution at different ball phase angles is established, then based on the contact stress distribution characteristics of the ball and raceway obtained by this model, the non-uniform contact characteristics are equivalently represented by the zonal virtual material joint model. Finally, the virtual material model of the ball bearing joint considering the non-uniform contact is established. The experimental platform of headstock with different sizes of ball bearings is built, and the effectiveness of this modeling method is verified by experiments. The results show that the virtual material joint modeling method is an effective method to characterize the uneven distribution of contact stress between ball and raceway.
-
Key words:
- non-uniform contact /
- joints /
- virtual materials /
- multi-objective optimization /
- frequency
-
表 1 滚珠轴承主要结构参数及虚拟材料层密度值
7012C型角接触轴承参数 数值 7014C型角接触轴承参数 数值 内径/mm 60 内径/mm 70 外径/mm 95 外径/mm 110 宽度/mm 18 宽度/mm 20 滚珠数量 18 滚珠数量 19 滚珠直径/mm 12.7 滚珠直径/mm 13 虚拟材料层密度/(kg/m3) 6 321 虚拟材料层密度/(kg/m3) 5 955.6 表 2 试验振型与仿真振型对比
第一阶 第二阶 第三阶 第四阶 第五阶 第六阶 -
[1] 康婷, 汪鹏鹏. 基于动力学模型的轴承间隙对机床主轴回转精度的影响研究[J]. 制造技术与机床, 2021(8): 170-174. [2] Altintas Y, Brecher C, Weck M, et al. Virtual machine tool[J]. CIRP Annals - Manufacturing Technology, 2005, 54(2): 115-138. doi: 10.1016/S0007-8506(07)60022-5 [3] Williams J G, Anley R E, Nash D H, et al. Analysis of externally loaded bolted joints: analytical, computational and experimental study[J]. International Journal of Pressure Vessels & Piping, 2009, 86(7): 420-427. [4] Xu C, Zhang J, Wu Z, et al. Dynamic modeling and parameters identification of a spindle–holder taper joint[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(5-8): 1517-1525. doi: 10.1007/s00170-012-4586-1 [5] 李院生, 张广鹏, 解芳芳, 等. 一种螺栓结合部刚度四点等效方法[J]. 机械强度, 2017(3): 153-157. [6] Xiao W W, Zhu M, Mao K M, et al. Dynamic model of spindle-holder taper joint of bt40 holder[J]. Applied Mechanics and Materials, 2014, 551: 158-163. doi: 10.4028/www.scientific.net/AMM.551.158 [7] 毛宽民, 邢满禧, 李斌, 等. 滚动直线导轨副可动结合部动力学建模[J]. 华中科技大学学报:自然科学版, 2016(7): 81-85. [8] 杨飚, 袁军堂, 汪振华. 环形虚拟材料的圆柱结合部动态特性建模[J]. 组合机床与自动化加工技术, 2015(3): 9-12. [9] Guo H, Zhang J, Feng P, et al. A virtual material-based static modeling and parameter identification method for a BT40 spindle–holder taper joint[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 307-314. doi: 10.1007/s00170-014-6376-4 [10] Ye H, Huang Y, Li P, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces[J]. Tribology International, 2016, 95: 109-117. doi: 10.1016/j.triboint.2015.11.013 [11] Tian H, Li B, Liu H, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3): 239-249. doi: 10.1016/j.ijmachtools.2010.11.004 [12] 张学良, 范世荣, 温淑花, 等. 基于等效横观各向同性虚拟材料的固定结合部建模方法[J]. 机械工程学报, 2017, 53(15): 141-147. [13] 廖雯俊. 基于虚拟材料的滚动直线导轨系统结合面建模与特性研究[D]. 武汉: 华中科技大学, 2015. [14] Harris T A, Kotzalas M N. Advanced concepts of bearing technology: rolling bearing analysis[M]. Fifth Edition. Crc Press, 2007. -