基于多层融合网络钛合金铣削加工过程中切削力预测研究

Research on cutting force prediction in milling process based on StackNet

  • 摘要: 针对制造装备中钛合金材料在铣削加工过程中对切削力预测研究的问题,提出了一种基于多层融合网络结构的方法来对切削力进行预测研究。首先对钛合金在VMC600加工中心上进行不同转速、进给速度和轴向切深的铣削实验并将采集到的实验数据利用融合网络进行预测分析。其次对单一模型与基础2层融合网络两种不同方法开展预测分析。在明确2层融合网络预测优势的情形下,进一步开展在不同层数情况下的预测精度和计算时间成本情况的研究。研究结果表明多层融合网络预测精度比单一模型平均提高了78.19%,当网络层数为6层时达到了预测精度最佳。利用多层融合网络对钛合金铣削过程中的切削力变化取得较好的预测效果,从而为铣削过程中合理制定加工工艺提供重要的参考。

     

    Abstract: In order to analyze the cutting force prediction in the milling process of titanium alloy materials, a method based on multi-layer StackNet network structure is proposed to predict the cutting force. Firstly, the milling experiments of titanium alloy with different speed, feed rate and axial cutting depth are carried out on VMC600 machining center, and the collected experimental data are predicted and analyzed by StackNet. Secondly, the single model and the 2-layer StackNet structure of the two different methods are used to carry out prediction analysis. In the case of clarifying the prediction advantages of two-layer StackNet, we conducted the research of StackNet with different layers furtherly. The results of the prediction experiments show that the prediction effect of multi-layer StackNet structure is improved by 78.19%. When the number of network layers is 6, the prediction accuracy is the best. The multi-layer StackNet structure is used to predict the change of cutting force in the process of aluminum alloy milling, which provides an important reference for the rational formulation of machining technology.

     

/

返回文章
返回