王宏民, 梁靖斌, 蒋孟, 邹云辉, 林荣耀. 基于遗传算法的水龙头铣削机器人路径规划[J]. 制造技术与机床, 2022, (12): 40-45, 51. DOI: 10.19287/j.mtmt.1005-2402.2022.12.006
引用本文: 王宏民, 梁靖斌, 蒋孟, 邹云辉, 林荣耀. 基于遗传算法的水龙头铣削机器人路径规划[J]. 制造技术与机床, 2022, (12): 40-45, 51. DOI: 10.19287/j.mtmt.1005-2402.2022.12.006
WANG Hongmin, LIANG Jingbin, JIANG Meng, ZOU Yunhui, LIN Rongyao. Faucet milling robot arm path planning based on ant colony algorithm[J]. Manufacturing Technology & Machine Tool, 2022, (12): 40-45, 51. DOI: 10.19287/j.mtmt.1005-2402.2022.12.006
Citation: WANG Hongmin, LIANG Jingbin, JIANG Meng, ZOU Yunhui, LIN Rongyao. Faucet milling robot arm path planning based on ant colony algorithm[J]. Manufacturing Technology & Machine Tool, 2022, (12): 40-45, 51. DOI: 10.19287/j.mtmt.1005-2402.2022.12.006

基于遗传算法的水龙头铣削机器人路径规划

Faucet milling robot arm path planning based on ant colony algorithm

  • 摘要: 为了提高机器人对水龙头铣削的加工质量及效率,提出一种路径最短的机器人铣削路径规划方法。以UR10e机器人为模型,分析了机器人的工作原理,同时,建立机器人的运动仿真模型。然后针对机器人铣削的水龙头,采用激光三维扫描,精准获取其点云图,并采用改进CC截面法获取1.75%机器人铣削路径。在保证铣削轮廓的前提下,按照曲率采样的方法,简化加工路径点。再结合遗传算法不断进化迭代,搜索铣削路径最短的最优解。通过仿真与实际测试,在最优轨迹优化方面,遗传算法在路径有约1%的正向优化效果。对于一些非关键部位优化了轨迹,提高水龙铣削加工的效率和精度,证明该方法具有可行性。

     

    Abstract: In order to improve the machining quality and efficiency of the robot for faucet milling, a robot milling path planning method with the shortest path is proposed. Using the UR10e robot as a model, the working principle of the robot is analyzed, and at the same time, the motion simulation model of the robot is established. Then, for the robot milled faucet, laser 3D scanning is used to accurately obtain its point cloud map, and the improved CC section method is used to obtain 1.75% robot milling paths. The processing path points are simplified according to the curvature sampling method under the premise of ensuring the milling profile. Then combined with the genetic algorithm continuous evolutionary iteration, the optimal solution of the shortest milling path is searched. Through simulation and actual test, the genetic algorithm has about 1% positive optimization effect on the path in terms of optimal trajectory optimization. The trajectory is optimized for some non-critical parts to improve the efficiency and accuracy of water dragon milling processing, which proves that the method is feasible.

     

/

返回文章
返回