Experimental study on ultrasonic assisted cutting of TB9 titanium alloy
-
摘要: 钛合金作为航空紧固件的主要原材料,其加工性能直接决定了航空紧固件的服役性能,进而影响着航空装备的可靠性,改善钛合金的机械加工性能是提高航空紧固件的有效方法。文章以TB9高强钛合金为研究对象,主要对比传统切削加工和超声切削加工在主切削力、表面加工形貌以及刀具磨损特征等方面的不同,结果表明了与传统切削相比,超声切削有效降低了切削过程中的切削波动,并降低了加工中的切削力;同时超声切削引起的机械划痕深度降低了61.34 %,且随着超声振幅的增加,TB9钛合金试样的表面加工质量显著提高、硬质合金刀具的氧化磨损程度降低。Abstract: Titanium alloy is the main raw material of aviation fasteners, and its processing performance directly determines the service performance of aviation fasteners, which in turn affects the reliability of aviation equipment. Improving the machinability of titanium alloys is an effective way to improve aerospace fasteners. The research takes TB9 high-strength titanium alloy as the research object, and mainly compares the differences in main cutting force, surface machining morphology and tool wear characteristics between conventional cutting and ultrasonic cutting. The results show that compared with conventional cutting, ultrasonic cutting effectively reduces the cutting fluctuation and cutting force during the cutting processd; In addition, the mechanical scratch depth caused by ultrasonic cutting is reduced by 61.34 %. With the increase of ultrasonic amplitude, the surface processing quality of the TB9 titanium alloy sample is significantly improved. Moreover, the degree of oxidation wear of cemented carbide tools is reduced.
-
表 1 TB9钛合金主要化学成分
% V Cr Zr Mo Al Ti Fe C N O 7.94 6.55 3.46 4.05 3.75 余量 0.09 0.02 0.01 0.13 表 2 EDS分析结果
% Ti Al V O Co C 其他 区域A
区域B70.98
42.675.66
4.543.38
0.529.56
2.591.40
0.110.43
0.42-
- -
[1] 刘乐, 殷银银, 金宏, 等. 超大规格GH4169高温合金螺栓成形工艺及模具结构优化[J]. 制造技术与机床. 2022(4): 110-115. [2] 赵谋周, 刘存, 李健. 某型机机翼装配中高强度钛合金螺栓断裂分析与试验研究[J]. 机械研究与应用, 2017, 30(1): 77-79. doi: 10.16576/j.cnki.1007-4414.2017.01.025 [3] 国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2021~2035)[M]. 北京: 科学出版社, 2021. [4] 孟倩. 圆片刀超声切削Nomex蜂窝芯表面质量研究[D]. 大连: 大连理工大学, 2020. [5] Peng Z L, Zhang X Y, Zhang D Y. Improvement of Ti-6Al-4V surface integrity through the use of high-speed ultrasonic vibration cutting[J]. Tribology International, 2021, 30(160): 107025. [6] 张晓辉, 罗明明, 许幸新, 等. 超声辅助钛合金切削的表面残余应力数值仿真[J]. 计算机仿真, 2016, 33(5): 208-211. doi: 10.3969/j.issn.1006-9348.2016.05.045 [7] Bai W, Sun R L, Jugen L, et al. Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: Numerical modelling and experimental analysis[J]. Ultrasonics, 2017, 78: 70-82. doi: 10.1016/j.ultras.2017.03.005 [8] 张翔宇, 路正惠, 彭振龙, 等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(5): 133-147. [9] 胡智特, 秦娜, 刘凡. 超声振动车削TC4钛合金的切削性能研究[J]. 机械设计与制造, 2018(2): 164-166. doi: 10.3969/j.issn.1001-3997.2018.02.048 [10] 代兵. 基于二维超声振动辅助的钛合金切削加工分析与试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(6): 92-96. doi: 10.13394/j.cnki.jgszz.2020.6.0015 [11] 张明军. 硬质合金二维超声车削过程及加工表面质量的试验研究[D]. 焦作: 河南理工大学, 2019. [12] 宋绪浩. 钛合金切削加工表面质量调控研究[D]. 济南: 山东大学, 2020. [13] 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 60-78. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007 -