面向磨损检测的切削表面粗糙度评估及AGRNN预测

Roughness evaluation and AGRNN prediction of cutting surface for wear detection

  • 摘要: 当前切削表面粗糙度大多需要结合人工经验以及多次测试方法,加工质量难以得到保障。在充分发挥加工阶段历史参数作用的基础上,构建了磨损监测模型。同时为了满足算法精度以及响应速率的要求,引入了快速响应和逼近的自适应广义回归神经网络(AGRNN)进行粗糙度预测。研究结果表明:计算得到粗糙度预测数据和实际值相关系数达到R2=0.988,预测模型达到了理想的控制状态,预测精度满足调控标准,经过设备调节后可以继续缩短响应时间。在主轴转速1 000~2 000 r/min、进给量0.2~0.3 mm/r、轴向切深0.2~0.4 mm、径向切深1~5 mm范围内,AGRNN对应的磨损与粗糙度MAPE依次为3.685和2.236,低于卷积神经网络(CNN)、高斯过程回归(GPR)、支持向量机(SVM)和多元线性回归(MLR)4种算法,达到了理想预测效果,控制决策时间也明显缩短。

     

    Abstract: At present, the roughness of cutting surface needs to be combined with manual experience and multiple testing methods, and the machining quality is difficult to be guaranteed. On the basis of giving full play to the role of historical parameters in machining stage, a wear monitoring model was established. At the same time, in order to meet the requirements of the algorithm accuracy and response rate, we introduced the adaptive generalized regression neural network (AGRNN) for roughness prediction. The results show that the correlation coefficient between the calculated roughness prediction data and the actual value reaches R2=0.988, the prediction model reaches the ideal control state, the prediction accuracy meets the control standard, and the response time can be further shortened after the equipment adjustment. Spindle speed 1000~2000 r/min, feed 0.2~0.3 mm/r, axial cutting depth 0.2~0.4 mm, radial cutting depth 1~5 mm range, AGRNN corresponding wear and roughness MAPE of 3.685 and 2.236 in turn, It is lower than the four algorithms of convolutional neural network (CNN), Gaussian process regression (GPR), support vector machine (SVM) and multiple linear regression (MLR), achieving the ideal prediction effect and significantly shortening the control decision time.

     

/

返回文章
返回