Abstract:
TiAl alloy is a typical challenging material to process, and standard machining is difficult to achieve acceptable surface quality. As a result, this research proposes ultrasonic longitudinal torsion aided milling. Using a single factor control experiment, it was determined how the machining parameters affected the surface roughness, surface morphology, and microhardness of TiAl alloy during ultrasonic longitudinal twist milling and conventional milling. The outcomes demonstrate that TiAl alloy surface roughness may be improved using ultrasonic longitudinal torsional milling, leading to typically low roughness (
Ra<0.6 μm). The TiAl alloy’s surface hardness may often be increased by more than 10% thanks to ULTM. The workpiece and chip obtained by ULTM have improved surface quality. The tool bottom edge wear of ULTM is greatly decreased while milling 150 mm3 TiAl alloy, and the primary wear types are oxidation wear and diffusion wear.