碳钢板激光切割工艺分析及优化

Analysis and optimization of laser cutting process of carbon steel plate

  • 摘要: 随着科技的不断发展,激光切割技术已经成为现代工业生产中不可或缺的技术之一,碳钢激光切割件加工技术也得到越来越多的应用。随着对加工工件的质量要求越来越高,对激光加工工艺进行优化以获得更高切割质量与切割精度的钢板具有重要意义。为了优化碳钢的激光加工工艺,文章以3 mm碳钢为对象,采用1 500 W激光器系统,研究了激光功率、切割速度、离焦量和辅助气体压力等切割参数对切割质量的影响。选取切缝宽度、表面粗糙度、挂渣高度作为评价切割质量的标准,综合分析工艺参数对切割质量的影响规律并研究了影响机理,同时通过卷积神经网络对数据进行预测分析,并采用带精英策略的非支配排序的遗传算法对工艺参数进行优化,获得辅助气体为氧气条件下激光切割碳钢的最佳工艺参数为P=1 500 W、v=64 mm/s、F=2.6 bar、h=2.9 mm。通过实验发现优化后的切件切割面光滑,无挂渣现象且切缝宽度较小,达到预期标准。

     

    Abstract: With the continuous development of science and technology, laser cutting technology has become one of the indispensable technologies in modern industrial production. Carbon steel laser cutting parts processing technology is also getting more and more applications, with the quality of the processed workpiece increasingly demanding, the optimization of the laser processing process in order to obtain a higher quality of cutting and cutting accuracy of the steel plate is of great significance, in order to optimize the laser processing of carbon steel, this paper to 3 mm carbon steel as the object, using a 1 500 W laser systematic study of the laser power, cutting speed, the amount of out-of-focus, Auxiliary gas pressure and other cutting parameters on the cutting quality. The cutting width, surface roughness and slag height are selected as the standards for evaluating the cutting quality, and the influence law of process parameters on cutting quality is comprehensively analyzed and the influence mechanism is studied. At the same time, the data are predicted and analyzed by convolutional neural network, and the genetic algorithm with the non-dominated sorting of the elite strategy is adopted to optimize the process parameters, so as to get the optimal process parameters for laser cutting of carbon steel under the condition of the auxiliary gas is oxygen. The optimal process parameters for laser cutting carbon steel under the condition of oxygen as auxiliary gas are P=1 500 W, v=64 mm/s, F=2.6 bar, and h=2.9 mm. It is found that the cut surface of the optimized piece is smooth without slagging phenomenon and the width of the slit is small, which meets the expected standard.

     

/

返回文章
返回