镍基高温合金磨削出口毛刺的有限元分析

Finite element analysis of outlet burr for grinding nickel-based superalloy

  • 摘要: 为揭示镍基高温合金磨削过程中出口毛刺的形成机理,文章建立了单颗PCBN磨粒高速磨削Inconel718合金的二维模型,并验证了模型的可行性。运用仿真软件DEFORM-2D对磨削出口毛刺的形成过程进行了研究,将其形成过程分为了8个阶段,并在不同磨削条件下采用正交实验法分析了磨削速度、磨削深度、磨粒圆锥角和磨粒刃口半径对磨削出口毛刺的影响规律。研究表明:磨削出口毛刺的尺寸主要由毛刺宽度和高度组成,毛刺宽度和高度均对磨削深度比较敏感,磨削深度越大,毛刺的宽度和高度也越大。另外,磨削速度、磨粒顶锥角、磨粒刃口半径增大,毛刺宽度也随之增加,但毛刺高度对这3个参数不是很敏感。

     

    Abstract: To reveal the formation mechanism of outlet burr during the grinding process of nickel-based superalloy, a two-dimensional finite element model of high-speed grinding of Inconel718 alloy with a single PCBN particle was established, and the feasibility of the model was verified. DEFORM-2D was used to study the outlet burr formation process, which was divided into eight periods. And the effects of grinding speed, grinding depth, abrasive particle cone angle and edge radius on the burr were analyzed by orthogonal experiment. The results show that the size of outlet burr is mainly composed of burr width and height, which are sensitive to the grinding depth. The greater the grinding depth, the greater the burr width and height. In addition, with the increase of grinding speed, abrasive particle cone angle and edge radius, the burr width also increases, but the burr height is insensitive to these three parameters.

     

/

返回文章
返回