基于元学习聚合分类器的流程工业故障诊断

Process industrial fault diagnosis based on meta-learning aggregated classifier

  • 摘要: 针对基于多元统计分析和深度学习的故障诊断方法需要大量的训练样本,但当前流程工业具有故障样本不足等特点,文章提出了一种模型无关的聚合分类器元学习框架(MAACML)。首先,该框架将模型无关的元学习与卷积神经网络相结合并引入一种聚合分类器来提高模型的分类准确率和泛化能力;然后,对田纳西伊士曼仿真数据集进行仿真实验验证模型的性能;最终,为了验证模型在实际数据集上的效果,在实际压缩机组数据集进行验证。研究结果表明:MAACML框架具有较高的平均准确率优于其他方法,且具有良好的泛化能力;并且引入的聚合分类器模块对分类结果有明显提升作用;在实际数据集上的分类准确率达到100%,证明了MACCML框架的实用性和有效性。

     

    Abstract: A model-agnostic aggregation classifier meta-learning framework (MAACML) is proposed to address the issue of insufficient fault samples in current industrial processes for fault diagnosis methods based on multivariate statistical analysis and deep learning. Firstly, this framework combines model-agnostic meta-learning with convolutional neural networks and introduces an aggregation classifier to improve the classification accuracy and generalization ability of the model. Then, simulation experiments are conducted on the Tennessee Eastman simulation dataset to validate the performance of the model. Finally, the model is validated on an actual compressor unit dataset to evaluate its effectiveness. The research results demonstrate that the MAACML framework achieves higher average accuracy compared to other methods and exhibits good generalization ability. The introduced aggregation classifier module significantly enhances the classification results. The classification accuracy on the actual dataset reaches 100%, confirming the practicality and effectiveness of the MAACML framework.

     

/

返回文章
返回