考虑环境温度的大型龙门五轴机床热误差建模方法研究

Study on thermal characteristics of large gantry five-axis machines considering environmental factors

  • 摘要: 大型龙门五轴机床的热变形是影响加工精度的重要因素之一。文章探讨了环境温度变化对机床热变形的影响规律。为提升大型龙门数控机床环境综合热误差预测精度,设计了一种基于带卷积的灰色长短期记忆神经网络( grey long short-term memory neural network, CNN-Grey-LSTM)的热误差预测模型。以某大型龙门机床为研究对象,使用有限元仿真与试验相结合的方式分析了环境温度变化引起的刀尖点热漂移误差。分别采用CNN-Grey-LSTM、CNN-LSTM和带卷积积分的灰色神经网络模型(GNNMCI(1,N))建立热误差模型并进行对比分析。结果表明,与常见的神经网络相比,CNN-Grey-LSTM模型能更好适应复杂多变的数据特征和时间序列预测问题,体现出更好的预测精度与鲁棒性。

     

    Abstract: The Thermal deformation of large gantry five-axis machine tools is one of the important factors affecting machining accuracy. The influence law of environmental temperature changes on the thermal deformation of machine tools is explored. To improve the prediction accuracy of the comprehensive thermal error of large gantry CNC machine tools in the environment, a thermal error prediction model with convolutional grey long short-term memory neural network (CNN-Grey-LSTM) is designed. Taking a certain large gantry machine tool as the research object, the thermal drift error of the tool tip point caused by environmental temperature changes is analyzed by combining finite element simulation and experiments. The thermal error models are established respectively by CNN-Grey-LSTM, CNN-LSTM and GNNMCI(1,N) and compared. The results show that compared with common neural networks, the CNN-Grey-LSTM model can better adapt to complex and changeable data characteristics and time series prediction problems, and has better prediction accuracy and robustness.

     

/

返回文章
返回