基于多策略改进SSA的负载转矩观测器优化设计

Optimization design of load torque observer based on multi-strategy improved sparrow search algorithm

  • 摘要: 针对永磁同步电机(permanent magnet synchronous motors, PMSM)在实际运行中因不确定负载扰动导致系统稳定性降低的问题,设计一种新型滑模观测器(sliding mode observer, SMO)。该观测器结合线性与非线性超螺旋算法优势,并利用优化麻雀搜索算法(sparrow search algorithm, SSA)对其参数进行整定。此优化算法结合立方(cubic)混沌映射与反向学习方法进行种群位置初始化,解决了初始种群位置的单一性问题;同时采用高斯变异方法对追随者位置进行调整,提高算法跳出局部最优的能力。在电机启动或负载突变阶段,通过设定阈值监测电流或转矩的变化,动态调整适应度函数的权值,以减小振荡或超调,从而提高系统对转矩变化的响应能力。与传统超螺旋滑模观测器相比,仿真结果表明优化后的观测器对负载转矩的估计误差减少44%,且在负载突变时转速波动减小9.26%。

     

    Abstract: To address the stability degradation of permanent magnet synchronous motors (PMSM) caused by uncertain load disturbances during operation, a novel sliding mode observer (SMO) is developed. This observer integrates the strengths of linear and nonlinear super-twisting algorithms and leverages an optimized sparrow search algorithm (SSA) for parameter tuning. The optimization algorithm employs cubic chaotic map and oppositional learning for population initialization, mitigating the issue of homogeneous initial positions. Additionally, Gaussian mutation is applied to adjust follower positions, enhancing the algorithm’s capability to escape local optima. During motor startup or sudden load changes, threshold-based monitoring of current or torque variations is introduced, dynamically adjusting the weights of the fitness function to reduce oscillations or overshoot, thus improving the system’s responsiveness to torque changes. Compared with traditional super-twisting sliding mode observers, simulation results indicate that the optimized observer reduces the estimation error of load torque by 44% and decreases speed fluctuations during load disturbances by 9.26%.

     

/

返回文章
返回