基于改进平衡优化器算法的绿色HJSMT问题求解

Green HJSMT problem solving based on improved equilibrium optimizer algorithm

  • 摘要: 针对混合多处理任务作业车间调度(hybrid job-shop scheduling with multiprocessor task, HJSMT)问题,以最小化最大完工时间和最小化总能耗为目标建立绿色HJSMT问题模型,提出一种改进平衡优化器算法(improved equilibrium optimizer, IEO)进行求解。算法在初始化阶段采用混合种群策略,融合随机生成与混沌映射规则,以提升初始解集的多样性与质量;在全局搜索阶段,引入Lévy飞行策略与反向搜索策略,有效扩大搜索范围的同时帮助种群跳出局部最优;此外,引入借鉴模拟退火思想的局部搜索,增强了算法的局部搜索能力,降低了种群陷入局部最优的风险。运用大量仿真实验对所提算法进行性能验证,实验结果表明,相较于其他对比算法,IEO在绿色HJSMT问题优化方面体现出更强的优越性和稳定性。

     

    Abstract: Aiming at the hybrid job-shop scheduling with multiprocessor task (HJSMT) problem, a green HJSMT problem model is established to minimize the maximum completion time and total energy cost, and an improved equilibrium optimizer (IEO) algorithm is proposed to solve the problem. In the initialization stage, the algorithm adopts the mixed population strategy and integrates the random generation and chaotic mapping rules to improve the diversity and quality of the initial solution set. In the global search phase, Lévy flight strategy and reverse search strategy are introduced to effectively expand the search range and help the population jump out of the local optimal. In addition, the local search based on simulated annealing is introduced to enhance the local search ability of the algorithm and reduce the risk of the population falling into local optimal. A large number of simulation experiments are used to verify the performance of the proposed algorithm. The experimental results show that compared with other comparison algorithms, IEO shows stronger superiority and stability in the optimization of green HJSMT problems.

     

/

返回文章
返回