参数优化最小噪声幅值反褶积在轴承故障诊断中的应用

Application of an optimized minimum noise amplitude deconvolution method in bearing fault diagnosis

  • 摘要: 在轴承故障诊断中,检测振动信号中的循环脉冲分量是关键,对故障特征提取至关重要。然而,复杂的工况环境常使微弱的脉冲分量被背景噪声和振动干扰掩盖。为此,提出了一种基于参数自适应最小噪声幅值反褶积 (parametric adaptive minimum noise amplitude deconvolution, PAMNAD)的轴承故障诊断方法。该方法利用改进的灰狼优化(improved grey wolf optimization, IGWO)算法对最小噪声幅值反褶积(minimum noise amplitude deconvolution, MNAD)进行优化,确定滤波器长度、迭代次数和噪声比这三个关键参数的最优值。优化后的最小噪声幅值反褶积在不同工况下展现出更高的自适应性和鲁棒性。试验结果表明,该方法在实际轴承故障信号处理中具有显著的有效性和优越性。

     

    Abstract: In the bearing fault diagnosis, detecting the cyclic pulse component in the vibration signal is the key to fault feature extraction. However, the complex operating environment often makes the weak pulse component masked by background noise and vibration interference. Therefore, a bearing fault diagnosis method based on parametric adaptive minimum noise amplitude deconvolution (PAMNAD) is proposed. This method uses the improved grey wolf optimization (IGWO) algorithm to optimize the minimum noise amplitude deconvolution (MNAD), and determines the optimal values of the filter length, the number of iterations and the noise ratio. The optimized MNAD shows higher adaptability and robustness under different working conditions. The experimental results show that this method has remarkable effectiveness and superiority in actual bearing fault signal processing.

     

/

返回文章
返回