基于热图像的机床主轴热误差预测

Thermal error prediction of machine tool spindle based on thermal images

  • 摘要: 机床的热误差是影响机床精密加工精度的主要误差来源,开发了一种基于热图像的主轴热误差预测模型,旨在为机床热误差补偿提供理论依据。首先,采用带有通道注意力(squeeze-and-excitation, SE)机制的大尺寸选择性核网络(large selective kernel network, LSKNet)神经网络,即SE-LSKNet来处理机床的热图像信息。与传统的卷积神经网络(convolutional neural network, CNN)模型相比,该模型能够进行多尺度的特征捕捉,突出关键通道信息,显著提升模型的鲁棒性与预测精度。其次,基于 VMC450 机床主轴构建了模型,并采集了相应的热图像及误差数据用于模型的训练和验证,同时在不同工况下进行模型评估。结果表明,该模型在测试集上的决定系数 R2达到98.86%,在 2 000 r/min 和 4 000 r/min 工况下,主轴热伸长预测误差的平均值分别为4.32 μm和4.49 μm,这表明该模型能够为提高机床加工精度提供新途径。

     

    Abstract: Thermal error of machine tools is a primary source of inaccuracy in precision machining. A thermal image-based prediction model for spindle thermal error has been developed, providing a theoretical foundation for thermal error compensation in machine tools. Firstly, a large selective kernel network (LSKNet) with a squeeze-and-excitation (SE) mechanism was employed to integrate thermal image data from the machine tool. Compared to traditional convolutional neural networks (CNN), this approach enables multi-scale feature extraction and enhances key channel information, significantly improving the model's robustness and prediction accuracy. Secondly, the model was constructed and validated using thermal images and thermal error data collected from the VMC450 machine tool spindle. The model was further evaluated under different working conditions t. The results demonstrate that the model achieves a coefficient of determination R² of 98.86% on the test set. Under spindle speeds of 2 000 r/min and 4 000 r/min, the average prediction errors for thermal elongation are 4.32 μm and 4.49 μm, respectively. The study provides a new approach for improving machining accuracy in machine tools.

     

/

返回文章
返回