基于深度学习的电机控制适配性评价算法研究

Research on adaptability assessment of motor control based on deep learning

  • 摘要: 针对传统电机控制适配性评价方法依赖人工经验、泛化能力不足的问题,为提升评价的客观性与智能化水平,提出了一种基于深度学习的电机控制适配性评价算法。依据电机控制系统的动态特性与电机自身特性,采用卷积神经网络(convolutional neural network,CNN)的模型架构,构建了以控制精度和响应速度为核心指标的评价体系。首先,基于五类典型的电机类型构建电机仿真模型,采集固定时间窗内的电机运行数据和工况参数建立多维度数据集;其次,设计以CNN为基础的深度学习网络,捕捉时空特征与时序关联,并不断迭代优化关键特征权重。实验结果表明,所提算法在测试集上的多种评价指标中均表现出了优秀的性能,且在不同负载工况下均表现出良好的稳定性。结论表明,该算法能够有效量化电机控制系统的综合适配性能,为工业场景中的电机选型与控制器参数优化提供智能化决策支持。

     

    Abstract: To address the limitations of traditional motor control adaptability assessment methods, which rely heavily on manual expertise and lack generalization capability, this study proposes a deep learning-based assessment algorithm to enhance objectivity and intelligence in assessment. Building upon the dynamic characteristics of motor control systems and intrinsic motor properties, a convolutional neural network (CNN) architecture is adopted to establish an evaluation system with control accuracy and response speed as core metrics. Firstly, constructing simulation models for five representative motor types and collecting multi-dimensional datasets comprising operational data and working condition parameters within fixed time windows. Secondly,designing a CNN-based deep learning network to extract spatiotemporal features and temporal correlations, with iterative optimization of key feature weights. Experimental results demonstrate that the proposed algorithm achieves superior performance across multiple evaluation metrics on the test set, while maintaining robust stability under varying load conditions. The findings indicate that this method can effectively quantify the comprehensive adaptability of motor control systems, providing intelligent decision support for motor selection and controller parameter optimization in industrial applications.

     

/

返回文章
返回