基于改进浣熊优化算法的永磁同步电机参数辨识

Parameter identification of permanent magnet synchronous motor based on improved coati optimization algorithm

  • 摘要: 针对表贴式永磁同步电机(permanent magnet synchronous motor, PMSM)在参数辨识过程中存在辨识精度低且收敛时间长的问题,提出一种用于电机参数辨识的改进浣熊优化算法(improved coati optimization algorithm, ICOA)。改进后的算法使用分段线性混沌映射(piecewise linear chaotic map, PWLCM)策略,提升了浣熊初始种群的随机性和多样性;使用正交Lévy 全局探索器,增加了搜索路径,提升全局搜索能力;使用引入种群多样性指标与迭代进度因子的自适应正态云模型,解决了算法早熟收敛的问题。对表贴式永磁同步电机进行数学建模,并使用ICOA算法对电机永磁体磁链、d-q轴电感、定子电阻进行参数辨识。仿真结果表明,相较于传统COA算法,4种参数辨识精度分别提升了12.33%、2.75%、1.13%、0.75%,且均控制在1.7%之内。

     

    Abstract: To address the issues of low accuracy and long computation time in parameter identification of surface-mounted permanent magnet synchronous motors (PMSM), an improved coati optimization algorithm (ICOA) is proposed. The improved algorithm integrates a piecewise linear chaotic map (PWLCM) to enhance the randomness and diversity of the initial raccoon population, employs an orthogonal-Lévy global explorer to enrich search trajectories and improve global exploration ability, and introduces an adaptive normal cloud model with population diversity indicators and iteration progress factors to overcome premature convergence. A mathematical model of the surface-mounted PMSM is established, and the ICOA is applied to identify the permanent magnet flux linkage, d-q axis inductances, and stator resistance. The simulation results indicate that compared to the traditional COA algorithm, the identification accuracy of the four parameters improved by 12.33%, 2.75%, 1.13%, and 0.75%, all within 1.7%.

     

/

返回文章
返回