南晓萱, 王俊, 肖明, 席文明. 机器人加工装备运动学镜像模型建立方法与实验研究[J]. 制造技术与机床, 2022, (1): 14-18. DOI: 10.19287/j.cnki.1005-2402.2022.01.002
引用本文: 南晓萱, 王俊, 肖明, 席文明. 机器人加工装备运动学镜像模型建立方法与实验研究[J]. 制造技术与机床, 2022, (1): 14-18. DOI: 10.19287/j.cnki.1005-2402.2022.01.002
NAN Xiaoxuan, WANG Jun, XIAO Ming, XI Wenming. Modeling and experimental research on mirror model of robotic processing equipment[J]. Manufacturing Technology & Machine Tool, 2022, (1): 14-18. DOI: 10.19287/j.cnki.1005-2402.2022.01.002
Citation: NAN Xiaoxuan, WANG Jun, XIAO Ming, XI Wenming. Modeling and experimental research on mirror model of robotic processing equipment[J]. Manufacturing Technology & Machine Tool, 2022, (1): 14-18. DOI: 10.19287/j.cnki.1005-2402.2022.01.002

机器人加工装备运动学镜像模型建立方法与实验研究

Modeling and experimental research on mirror model of robotic processing equipment

  • 摘要: 在数字空间建立加工装备的镜像模型是实现智能制造的基础,镜像模型与加工装备构成数字孪生体,从而在数字空间中实现加工装备的加工模拟、仿真与参数优化。利用轴旋转法获得物理机器人各轴轴线及其位型,实现物理机器人几何参数与零位的解耦标定。采用坐标变换法建立物理机器人的运动学方程并利用牛顿迭代法求取运动学逆解。在数字空间中,利用标定的几何参数建立物理机器人的镜像模型,并集成刀轨迹生成与后处理模块。实验结果表明,由数字空间镜像模型生成的加工轨迹,物理机器人不变姿态的加工误差最大值为0.28 mm,机器人变姿态的加工误差范围为-0.83~+0.52 mm。

     

    Abstract: Establishing a mirror model of processing equipment in the digital space is the basis for intelligent manufacturing. The mirror model and processing equipment constitute a digital twin, so as to realize the processing simulation, simulation and parameter optimization of the processing equipment in the digital space. The axis rotation method is used to obtain the axis and position of each axis of the physical robot, and the decoupling calibration of the geometric parameters and the zero position of the physical robot is realized. The coordinate transformation method is used to establish the kinematics equation of the physical robot and the Newton iteration method is used to obtain the inverse kinematics solution. In the digital space, the calibrated geometric parameters are used to establish a mirror model of the physical robot, and the tool path generation and post-processing modules are integrated. The experimental results show that the maximum processing error of the physical robot′s constant attitude is 0.28 mm, and the machining error range of the robot′s variable attitude is -0.83~+0.52 mm.

     

/

返回文章
返回