Research on method of line structure light active vision weld seam detection
-
摘要: 针对焊缝尺寸测量和表面成形质量评估问题,研究一种基于线结构光的焊缝视觉成形检测系统。在详细论述结构光视觉传感器的组成结构以及标定过程的基础上,优化图像预处理流程,提出了基于边界限定的灰度重心法来提取激光条纹中心线。以单像素的激光条纹为信息源表征焊缝轮廓,融合多特征点提取算法实现激光条纹轮廓特征点的检测并基于特征点建立角焊缝的尺寸计算模型,最终实现焊缝尺寸测量。结果表明:该焊缝成形视觉检测系统能满足焊缝检测性能的要求。Abstract: In order to realize weld dimension measurement and surface forming quality assessment, a weld forming quality inspection system based on line structure light was studied.Based on the principle of laser triangulation, the composition and calibration process of structured light vision sensor was discussed in detail, and the image processing is optimized, and the gray gravity center method based on boundary limit was proposed to extract the laser fringe center line. Using a single pixel laser fringe as the information source to characterize the weld contour, a multi-feature point extraction algorithm was used to detect the feature points of the laser fringe contour. The dimension calculation models of butt weld and fillet weld were established based on the identification of characteristic points of weld laser profile curve. Finally, the measurement of weld dimension were realized. The results show that the inspection system of weld forming can obtain satisfactory performance of weld inspection.
-
[1] Yang L, Liu Y, Peng J. Advances techniques of the structured light sensing in intelligent welding robots: a review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3): 1027-1046. doi: 10.1007/s00170-020-05524-2 [2] 杨国威, 闫树明, 王以忠. 基于方向梯度直方图粒子滤波的V型焊缝跟踪[J]. 中国激光, 2020, 47(7): 330-338. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202007030.htm [3] Zhang G, Shi Y, Gu Y F, et al. Welding torch attitude-based study of human welder interactive behavior with weld pool in GTAW[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48(2): 145-156. http://www.onacademic.com/detail/journal_1000039869826910_37ec.html [4] Han Y, Fan J, Yang X. A structured light vision sensor for on-line weld bead measurement and weld quality inspection[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1): 2065-2078. doi: 10.1007/s00170-019-04450-2 [5] White A R, SmithS J, Lucas J. Vision-based gauge for online weld profile metrology[J]. IEE Proceedings Science, Measurement & Technology, 1994, 141(6): 521-526. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=331587 [6] 孙博文, 朱志明, 郭吉昌, 等. 基于组合激光结构光的视觉传感器检测算法及图像处理流程优化[J]. 清华大学学报: 自然科学版, 2019, 59(6): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201906005.htm [7] 丁晓东, 高向东, 张南峰, 等. 激光视觉传感的焊缝成形测量[J]. 制造技术与机床, 2018(12): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC201812036.htm [8] Chu H H, Wang Z Y. A vision-based system for post-welding quality measurement and defect detection[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9-12): 3007-3014. doi: 10.1007/s00170-015-8334-1 [9] Nguyen H C, Lee B R. Laser-vision-based quality inspection system for small-bead laser welding[J]. International Journal of Precision Engineering & Manufacturing, 2014, 15(3): 415-423. doi: 10.1007/s12541-014-0352-7 [10] 曹辉, 杨理践, 刘俊甫, 等. 基于数据融合的小波变换漏磁异常边缘检测[J]. 仪器仪表学报, 2019, 40(12): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912009.htm [11] 单东日, 童灿, 乃学尚, 等. 基于小波和灰度共生矩阵的带钢表面缺陷识别[J]. 制造技术与机床, 2020(2): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC202002026.htm [12] Zeng J, Cao G Z, Peng Y P, et al. Aweld joint type identification method for visual sensor based on image features and SVM[J]. Sensors, 2020, 20(2): 471-491. doi: 10.3390/s20020471 -