Incremental model predictive of PMSM based on sliding mode disturbance observer
-
摘要: 针对永磁同步电机模型预测控制在强扰动下的控制性能降低,及非增量式预测模型存在静态误差等问题,提出一种基于滑模扰动观测器的永磁同步电机转速-电流单环增量式模型预测控制方法。首先,基于永磁同步电机在同步旋转坐标下的数学模型和模型预测控制的原理,设计了转速-电流单环增量式模型预测控制器以消除静态误差。然后,设计电流限幅器,以保证电机工作于电流约束内。最后,设计滑模扰动观测器对负载扰动进行观测,用于前馈补偿控制,并证明观测器的稳定性。仿真结果显示,所设计的观测器能快速、准确地观测到负载转矩的变化,所提出的单环控制器具有良好的动态性能。与传统PI控制及非增量式模型预测控制进行仿真对比,所提方法具有超调小、抗干扰能力强等优点。Abstract: Aiming at the problems of the reduced control performance of PMSM model predictive control under strong disturbance and the existence of static errors in the non-incremental predictive model, an incremental single-loop model predictive control based on sliding mode disturbance observer is studied in this paper. First, by using the mathematical model of the PMSM, through the model predictive control theory, the single-loop incremental model predictive controller was designed. Then, a current constraint method based on the deadbeat principle for the controller was designed. Finally, the sliding mode disturbance observer was designed to observe the load disturbance of the system, which was used to the feed-forward compensation control. And the stability of the system was proved. Simulation and experimental results show that the proposed control method has good transient performances and strong robustness. In addition, compared with the traditional PI and non-incremental model predictive control methods, the method has the advantages of small overshoot and strong anti-interference ability.
-
表 1 永磁同步电机参数
电机参数 数值 电机极对数np 4 定子电阻Rs/Ω 0.338 定子电感Ls/mH 1.515 永磁体磁链Ψf/Wb 0.088 4 额定转速nN/( r/min) 3 000 转动惯量Jr/( kg·m2) 1.11e-3 额定转矩TN/(N·m) 6 -
[1] 李涛. 采用扩展滑模观测器的数控机床永磁同步电机鲁棒控制方法[J]. 制造技术与机床, 2022(5): 152-158. [2] Xu B, Zhang L, Ji W. Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2753-2762. doi: 10.1109/TTE.2021.3083925 [3] 吕霞, 陈健, 吕成兴, 等. 基于模糊逻辑的永磁同步电机自适应控制[J]. 控制工程, 2022, 29(5): 837-843. [4] Zhang C F, Wu G P, Rong F, et al. Robust fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5324-5334. [5] Elmorshedy M, Xu W, El-Sousy F, et al. Recent achievements in model predictive control techniques for industrial motor: a comprehensive state-of-the-art[J]. IEEE Access, 2021, 9: 58170-58191. doi: 10.1109/ACCESS.2021.3073020 [6] Nguyen A, Rafaq M, Choi H, et al. Observer-based deadbeat predictive speed controller for surface-mounted PM synchronous motor[J]. ISA Transactions, 2021, 110: 305-318. doi: 10.1016/j.isatra.2020.10.047 [7] Zhang X G, Hou B S, Mei Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electronics, 2016, 32(5): 3818-3834. [8] 范中华, 李世华. 基于永磁同步电机调速系统的模型预测控制方法[C]. 合肥: 第三十一届中国控制会议论文集C卷 , 2012: 571-576. [9] 刘旭东, 李珂, 张奇, 等. 基于非线性扰动观测器的永磁同步电机单环预测控制[J]. 中国电机工程学报, 2018, 38(7): 2153-2162, 2230. [10] Hewing L, Wabersich K, Menner M, et al. Learning-based model predictive control: Toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3: 269-296. doi: 10.1146/annurev-control-090419-075625 [11] Zhao Y, Liu X D, Zhang Q. Predictive speed-control algorithm based on a novel extended-state observer for PMSM drives[J]. Applied Sciences, 2019, 9(12): 2575. doi: 10.3390/app9122575 [12] Zhou M D, Liu X Y, Li S H. Composite single-loop model predictive control design for PMSM servo system speed regulation based on disturbance observer[C]. Hefei: 2020 Chinese Control and Decision Conference (CCDC), 2020: 2886-2892. [13] Yang J, Zheng W X, Li S H, et al. Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5807-5816. doi: 10.1109/TIE.2015.2450736 [14] Li S H, Liu H X, Fu W S. An improved predictive functional control method with application to PMSM systems[J]. International Journal of Electronics, 2017, 104(1): 126-142. doi: 10.1080/00207217.2016.1196743 [15] Liu X Y, Mao J L, Yang J, et al. Robust predictive visual servoing control for an inertially stabilized platform with uncertain kinematics[J]. ISA Transactions, 2021, 114: 347-358. doi: 10.1016/j.isatra.2020.12.039 [16] Li Z, Wang F X, Ke D L, et al. Robust continuous model predictive speed and current control for PMSM with adaptive integral sliding-mode approach[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14398-14408. doi: 10.1109/TPEL.2021.3086636 -