杨巍, 牛蒙蒙, 白玉珍, 单春海, 卢伟国, 吕世旭. 基于cGAN的刀具磨损状态监测数据集增强方法[J]. 制造技术与机床, 2023, (6): 55-60. DOI: 10.19287/j.mtmt.1005-2402.2023.06.010
引用本文: 杨巍, 牛蒙蒙, 白玉珍, 单春海, 卢伟国, 吕世旭. 基于cGAN的刀具磨损状态监测数据集增强方法[J]. 制造技术与机床, 2023, (6): 55-60. DOI: 10.19287/j.mtmt.1005-2402.2023.06.010
YANG Wei, NIU Mengmeng, BAI Yuzhen, SHAN Chunhai, LU Weiguo, LV Shixu. A data augmentation method based on cGAN for tool wear state monitoring[J]. Manufacturing Technology & Machine Tool, 2023, (6): 55-60. DOI: 10.19287/j.mtmt.1005-2402.2023.06.010
Citation: YANG Wei, NIU Mengmeng, BAI Yuzhen, SHAN Chunhai, LU Weiguo, LV Shixu. A data augmentation method based on cGAN for tool wear state monitoring[J]. Manufacturing Technology & Machine Tool, 2023, (6): 55-60. DOI: 10.19287/j.mtmt.1005-2402.2023.06.010

基于cGAN的刀具磨损状态监测数据集增强方法

A data augmentation method based on cGAN for tool wear state monitoring

  • 摘要: 在刀具磨损过程中,通常采集的正常磨损阶段的样本数据比初始磨损阶段和急剧磨损阶段的样本数据量多,这导致刀具磨损状态数据集不平衡,从而使深度学习网络模型对刀具磨损状态预测准确性降低。针对问题,文章提出一种基于cGAN的刀具磨损状态监测数据集增强方法。在cGAN中添加了类别条件信息,有利于生成器更好的捕捉刀具磨损样本的数据分布特点,从而生成和真实刀具磨损样本分布相似的样本。采集铣削加工过程中的振动信号,将振动信号转换成频谱数据输入到cGAN中,cGAN通过生成器和鉴别器之间的对抗训练,学习数据分布特点,生成刀具磨损状态样本数据。将增强的数据集输入到深度学习网络模型中进行分类,测试生成数据的可用性。实验结果显示,由增强的刀具磨损状态数据集训练深度学习网络模型,可以有效提高模型对刀具磨损状态监测的准确性,其预测精度达到98.1%。

     

    Abstract: In the process of tool wear, the amount of sample data collected in the normal wear stage is usually more than that in the initial wear stage and the sharp wear stage, which leads to the imbalance of the tool wear state data set, thus reducing the accuracy of the deep learning network model in predicting the tool wear state. To solve this problem, this paper proposes a data augmentation method based on cGAN for tool wear state monitoring. The category information as condition in cGAN is helpful for the generator to better capture the data distribution characteristics of tool wear samples, so as to generate samples similar to the real tool wear sample distribution. Specifically, the vibration signals in the milling process are collected. The vibration signals are converted into spectral data and input into the cGAN. The cGAN is trained by adversarial training between the generator and discriminator to learn data distribution characteristics and generate tool wear state sample data. The enhanced data set is input into the deep learning network model for classification to test the availability of the generated sample data. Experimental results show that training the deep learning network model with the enhanced tool wear states dataset can effectively improve the accuracy of the model in monitoring tool wear states, and the prediction accuracy reaches 98.1%.

     

/

返回文章
返回