留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工艺参数对切向超声辅助磨削钛合金表面质量的影响

王岩 冷和鹏 朱贵升 朱绪胜 董颖怀 付志强

王岩, 冷和鹏, 朱贵升, 朱绪胜, 董颖怀, 付志强. 工艺参数对切向超声辅助磨削钛合金表面质量的影响[J]. 制造技术与机床, 2023, (9): 196-200. doi: 10.19287/j.mtmt.1005-2402.2023.09.027
引用本文: 王岩, 冷和鹏, 朱贵升, 朱绪胜, 董颖怀, 付志强. 工艺参数对切向超声辅助磨削钛合金表面质量的影响[J]. 制造技术与机床, 2023, (9): 196-200. doi: 10.19287/j.mtmt.1005-2402.2023.09.027
WANG Yan, LENG Hepeng, ZHU Guisheng, ZHU Xusheng, DONG Yinghuai, FU Zhiqiang. Experimental study on surface quality of titanium alloy by tangential ultrasonic assisted grinding[J]. Manufacturing Technology & Machine Tool, 2023, (9): 196-200. doi: 10.19287/j.mtmt.1005-2402.2023.09.027
Citation: WANG Yan, LENG Hepeng, ZHU Guisheng, ZHU Xusheng, DONG Yinghuai, FU Zhiqiang. Experimental study on surface quality of titanium alloy by tangential ultrasonic assisted grinding[J]. Manufacturing Technology & Machine Tool, 2023, (9): 196-200. doi: 10.19287/j.mtmt.1005-2402.2023.09.027

工艺参数对切向超声辅助磨削钛合金表面质量的影响

doi: 10.19287/j.mtmt.1005-2402.2023.09.027
基金项目: 天津市自然科学基金项目(18JCQNJC05200);天津市教委科研计划项目(2018KJ116); 天津市自然科学基金项目(18JCYBJC88900);天津市自然科学基金青年项目(18JCQNJC75300)
详细信息
    作者简介:

    王岩,男,1985年生,副教授,研究方向为精密与特种加工技术。E-mail: yanwang@tust.edu.cn

    通讯作者:

    董颖怀,男,1980年生,讲师,研究方向为特种加工与超精密加工。E-mail:dongyh@tust.edu.cn

  • 中图分类号: TG580.1

Experimental study on surface quality of titanium alloy by tangential ultrasonic assisted grinding

  • 摘要: 针对磨削加工过程中磨削温度高、表面质量差以及砂轮使用寿命低等问题,从运动学和切削力两方面分析了切向超声辅助磨削加工机理。以Ti6Al4V为工件材料,通过对比实验研究了超声振幅、磨削深度、进给速度与主轴转速对材料表面粗糙度的影响。实验结果表明:与单一磨削加工相比,引入超声振动后材料表面粗糙度Ra降低25%~40%,材料表面凹坑明显减少,表面形貌发生显著变化。随着振幅的升高材料表面粗糙度减小,最大降幅为40%;粗糙度随着转速的升高而降低,降低幅度为25%。证明了超声振动的引入可以减小粗糙度,提高磨削加工工件的表面质量。研究结果为磨削加工中参数的选择提供指导意义。

     

  • 图  1  切向超声辅助磨削的运动模型

    图  2  单颗磨粒的运动轨迹

    图  3  试验装置搭建图

    图  4  振幅对粗糙度的影响

    图  5  不同振幅下加工表面微观形貌图

    图  6  磨削深度对粗糙度影响

    图  7  磨削深度变化对粗糙度影响

    图  8  进给速度对粗糙度的影响

    图  9  不同进给速度加工的表面微观形貌对比

    图  10  转速对粗糙度的影响

    图  11  转速对微观表面形貌影响

  • [1] Sun L N,Wang H X,Chen L G,et al. A novel ultrasonic micro-dissection technique for biomedicine[J]. Ultrasonics,2006,44:255-260. doi: 10.1016/j.ultras.2006.06.010
    [2] 高腾, 李长河, 张彦彬, 等. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J/OL]. 机械工程学报. https://kns.cnki.net/kcms/detail/11.2187.TH.20220927.0939.004.html.2022-10-10
    [3] Babitsky V I,Mitrofanov A V,Silberschmidt V V. Ultrasonically assisted turning of aviation materials: simulations and experimental study[J]. Ultrasonics,2004,42(1-9):81-86. doi: 10.1016/j.ultras.2004.02.001
    [4] 许文昊, 李长河, 张彦彬, 等. 静电雾化微量润滑研究进展与应用[J/OL]. 机械工程学报, https://kns.cnki.net/kcms/detail//11.2187.TH.20230111.1037.001.html, 2023-1-11.
    [5] Yang Z C,Zhu L D,Ni C B,et al. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics[J]. International Journal of Mechanical Sciences,2019,155:66-82. doi: 10.1016/j.ijmecsci.2019.02.031
    [6] Yang Z C,Zhu L D,Zhang G X,et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools & Manufacture,2020,156:103594.
    [7] Yang Y Y,Yang M,Li C H,et al. Machinability of ultrasonic vibration assisted micro-grinding in biological bone using nanolubricant[J]. Front. Mech. Eng.,2023,18(1). doi: 10.1007/s11465-022-0717-z
    [8] Wang Y,Vinod K Sarin,Lin B,et al. Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites[J]. International Journal of Machine Tools & Manufacture,2016,101:10-17.
    [9] Wang Y,Lin B,Zhang X F. Research on the system matching model in ultrasonic vibration-assisted grinding[J]. International Journal of Advanced Manufacturing Technology,2014,70:449-458. doi: 10.1007/s00170-013-5269-2
    [10] Wang Y,Lin B,Wang S L,et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools & Manufacture,2014,77:66-73.
    [11] Cong W L,Pei Z J,Feng Q,et al. Rotary ultrasonic machining of CFRP: A comparison with twist drilling[J]. Journal of Reinforced Plastics and Composites,2012,31(5):313-321. doi: 10.1177/0731684411427419
    [12] Ning F D,Wang H,Cong W L,et al. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites[J]. Ultrasonics,2017,76:44-51. doi: 10.1016/j.ultras.2016.12.012
    [13] Jia D Z,Li C H,Zhang Y B,et al. Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration[J]. The International Journal of Advanced Manufacturing Technology,2019,100(1-4):457-473. doi: 10.1007/s00170-018-2718-y
    [14] A N Unyanina,A Sh Khusainovb. Study of Forces during Ultrasonic Vibration Assisted Grinding[J]. Procedia Engineering,2016,150:1000-1006. doi: 10.1016/j.proeng.2016.07.153
    [15] Gao T,Zhang Z B,Li C H,et al. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering,2022,17(24). doi: 10.1007/s11465-022-0680-8
    [16] Liu M Z,Li C H,Zhang Z B,et al. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics[J]. Chinese Journal of Aeronautics,2023(7):167-200.
  • 加载中
图(11)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  18
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-22
  • 录用日期:  2023-05-10

目录

    /

    返回文章
    返回