留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于累积损伤的渗碳齿轮钢疲劳寿命预测模型构建

邓海龙 刘兵 郭扬 康贺铭 李明凯 李永平

邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于累积损伤的渗碳齿轮钢疲劳寿命预测模型构建[J]. 制造技术与机床, 2022, (3): 144-149. doi: 10.19287/j.cnki.1005-2402.2022.03.025
引用本文: 邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于累积损伤的渗碳齿轮钢疲劳寿命预测模型构建[J]. 制造技术与机床, 2022, (3): 144-149. doi: 10.19287/j.cnki.1005-2402.2022.03.025
DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Fatiguelife prediction model of carburized gear steel based on cumulative damage[J]. Manufacturing Technology & Machine Tool, 2022, (3): 144-149. doi: 10.19287/j.cnki.1005-2402.2022.03.025
Citation: DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Fatiguelife prediction model of carburized gear steel based on cumulative damage[J]. Manufacturing Technology & Machine Tool, 2022, (3): 144-149. doi: 10.19287/j.cnki.1005-2402.2022.03.025

基于累积损伤的渗碳齿轮钢疲劳寿命预测模型构建

doi: 10.19287/j.cnki.1005-2402.2022.03.025
基金项目: 

内蒙古自治区自然科学基金 2018BS05005

内蒙古高等教育研究项目 NJZY21306

内蒙古自治区其他厅局项目 2018NMKJ11

内蒙古工业大学科学研究项目 ZZ201801

内蒙古工业大学科学研究项目 ZY202005

详细信息
    通讯作者:

    邓海龙,男,1986年生,博士,副教授,主要研究方向为结构及材料超高周疲劳,已发表论文20余篇。E-mail:deng_hl@126.com

  • 中图分类号: TG115.5+7

Fatiguelife prediction model of carburized gear steel based on cumulative damage

  • 摘要: 采用轴向高频疲劳试验机进行超高周疲劳实验,研究了不同应力比(R=0和R=0.3)下渗碳齿轮钢疲劳特性。结果表明:在应力比为0和0.3时,渗碳齿轮钢的失效形式分为表面失效和内部失效。内部失效过程分为疲劳裂纹萌生阶段(夹杂-细颗粒区(fine granular area, FGA))、稳定扩展阶段(FGA-鱼眼)和瞬间断裂(鱼眼之外)。基于累积损伤法,建立了内部裂纹萌生和扩展阶段的疲劳寿命预测模型;最终建立了渗碳齿轮钢多应力比下的全寿命预测模型,预测精度较高。

     

  • 图  1  疲劳试样的形貌及尺寸

    图  2  微观硬度和残余应力与距离表面深度的关系

    图  3  应力比为0和0.3时的渗碳齿轮钢S-N曲线

    图  4  典型断口表面观测

    图  5  裂纹尺寸与σa的关系.

    图  6  内部平均夹杂尺寸时的疲劳预测寿命

    表  1  齿轮钢的化学成分 %

    C Si Mn S P Cr Ni Fe
    0.16 0.37 0.6 0.035 0.035 1.65 3.65 其他
    下载: 导出CSV

    表  2  全寿命预测模型拟合参数评估

    R mi ni mp np
    0 7.62 -1.43 -0.54 7.42
    0.3 6.00 0.27 -4.92 16.90
    下载: 导出CSV

    表  3  疲劳寿命预测结果

    应力比 应力幅 NT/Nexp
    R=0 500 1.24
    R=0 525 1.16
    R=0 550 0.34
    R=0 550 0.44
    R=0 575 1.12
    R=0 600 1.89
    R=0 575 2.85
    R=0 625 2.89
    R=0.3 455 1.05
    R=0.3 437.5 1.29
    下载: 导出CSV
  • [1] Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: Effects of evaluation of maximum crack sizes and residual stress distribution[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(2): 342-354. doi: 10.1111/ffe.13149
    [2] Sheng J, Huang S, Zhou J Z, et al. Effects of warm laser peening on the elevated temperature tensile properties and fracture behavior of IN718 nickel-based superalloy[J]. Engineering Fracture Mechanics, 2017, 169: 99-108. doi: 10.1016/j.engfracmech.2016.11.016
    [3] Han S W, Yang X G, Shi D Q, et al. Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue[J]. International Journal of Plasticit, 2020, 126: 102622. doi: 10.1016/j.ijplas.2019.11.001
    [4] Fintová S, Kuběna I, Trško L, et al. Fatigue behavior of AW7075 aluminum alloy in ultra-high cycle fatigue region[J]. Materials Science & Engineering A, 2020, 774: 138922.
    [5] Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: effects of evaluation of maximum crack sizes and residual stress distribution[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(2): 342-354.
    [6] Kong W W, Yuan C, Zhang B N. Investigations on cyclic deformation behaviors and corresponding failure modes of a Ni-based superalloy[J]. Materials Science & Engineering A, 2020, 791: 139775.
    [7] 黄朝文, 赵永庆, 辛社伟, 等. 显微组织均匀性对片层Ti-55531齿轮高周疲劳裂纹萌生的影响[J]. 稀有金属材料与工程, 2017, 46(3): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201703016.htm
    [8] 邓海龙, 李伟, 孙振铎, 等. 基于夹杂-细晶粒区-鱼眼疲劳失效的超长寿命预测模型[J]. 工程科学学报, 2017, 39(4): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704012.htm
    [9] Zhu M L, Jin L, Xuan F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157: 259-275. doi: 10.1016/j.actamat.2018.07.036
    [10] Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high‐cycle fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(11): 1305-1314. doi: 10.1111/ffe.12344
    [11] Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. International Journal of Fatigue, 2014, 58: 144-151. doi: 10.1016/j.ijfatigue.2013.02.023
    [12] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3): 163-182. doi: 10.1016/0142-1123(94)90001-9
    [13] Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(8): 667-672.
    [14] Sun C Q, Liu X L, Hong Y S. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime[J]. Acta Mechanica Sinica, 2015, 31(3): 383-391. doi: 10.1007/s10409-015-0451-4
    [15] Hou S Q, Xu J Q. Relationship among S-N curves corresponding to different mean stresses or stress ratios[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2015, 16(11): 885-893. http://www.jzus.zju.edu.cn/oldversion/opentxt.php?doi=10.1631/jzus.A1400321
    [16] Sakai T. Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use[J]. The Japan Society of Mechanical Engineers, 2009, 3(3): 425-439. http://www.onacademic.com/detail/journal_1000039731005510_ba93.html
    [17] 韩培培, 权纯逸, 焦清洋, 等. 激光冲击强化对7050-T7451铝齿轮残余应力和力学性能的影响[J]. 金属热处理, 2021, 46(2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202102039.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  24
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 网络出版日期:  2022-03-12

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部