留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基合金微钻削加工现状与分析

张好强 张傲 吴昱鑫 王鑫阁 侯锁霞

张好强, 张傲, 吴昱鑫, 王鑫阁, 侯锁霞. 镍基合金微钻削加工现状与分析[J]. 制造技术与机床, 2022, (11): 71-77. doi: 10.19287/j.mtmt.1005-2402.2022.11.011
引用本文: 张好强, 张傲, 吴昱鑫, 王鑫阁, 侯锁霞. 镍基合金微钻削加工现状与分析[J]. 制造技术与机床, 2022, (11): 71-77. doi: 10.19287/j.mtmt.1005-2402.2022.11.011
ZHANG Haoqiang, ZHANG Ao, WU Yuxin, WANG Xinge, HOU Suoxia. Present situation and analysis of micro drilling of nickel base alloy[J]. Manufacturing Technology & Machine Tool, 2022, (11): 71-77. doi: 10.19287/j.mtmt.1005-2402.2022.11.011
Citation: ZHANG Haoqiang, ZHANG Ao, WU Yuxin, WANG Xinge, HOU Suoxia. Present situation and analysis of micro drilling of nickel base alloy[J]. Manufacturing Technology & Machine Tool, 2022, (11): 71-77. doi: 10.19287/j.mtmt.1005-2402.2022.11.011

镍基合金微钻削加工现状与分析

doi: 10.19287/j.mtmt.1005-2402.2022.11.011
基金项目: 河北省自然科学基金项目(E2021209026)
详细信息
    作者简介:

    张好强,男,1979年生,博士,副教授,从事先进制造技术研究,发表论文30多篇。E-mail:haoqiang790914@163.com

    通讯作者:

    侯锁霞,女,1972年生,副教授,从事先进制造技术研究,发表论文20多篇。E-mail:housuoxia@163.com

  • 中图分类号: TG713

Present situation and analysis of micro drilling of nickel base alloy

  • 摘要: 镍基合金因其优异的物理性能被广泛应用于航空涡轮发动机中,而航空涡轮发动机涉及到许多精密零件需要用微钻进行加工,钻削镍基合金时材料加工硬化现象严重,致使加工难度增加,刀具磨损严重,影响钻孔质量。分析了镍基合金微小孔钻削面临的难题,从切屑形成机制、钻削力与扭矩、钻削热和钻削温度等方面对微钻削机理进行了总结和讨论,分析了钻头的磨损形式、影响因素和磨损机制,探讨了影响毛刺、白层和圆度等孔加工质量的因素,从刀具几何形状、刀具材料和辅助钻削方法等方面提出了一些提高孔加工质量的措施。

     

  • 图  1  前刀面磨损[15]

    图  2  切削刃与横刃磨损[16]

    图  3  后刀面磨损[17]

    图  4  白层[24]

    图  5  扁钻

    图  6  麻花钻

    图  7  单槽钻

    图  8  深孔枪钻

    图  9  复合钻

  • [1] Yonezawa T. Nickel alloys: properties and characteristics [M]. Comprehensive Nuclear Materials, 2012: 233-266.
    [2] 姬芳芳. 高速切削 GH4169 切削区材料塑性行为研究[D]. 长春: 长春工业大学, 2018.
    [3] Motorcu A R, Kuş A, Durgun I. The evaluateon of the effects of control factors on surface roughness in the drilling of waspaloy superalloy[J]. Measurement, 2014, 58: 394-408. doi: 10.1016/j.measurement.2014.09.012
    [4] 高利. 基于涡轮发动机热端部件的高温合金材料钻削仿真研究[D]. 北京: 北方工业大学, 2021.
    [5] 曾维敏. 钻削过程切屑受力建模及有限元仿真研究[D]. 湘潭: 湘潭大学, 2015.
    [6] Sahoo A K, Jeet S, Bagal D K, et al. Parametric optimization of CNC-drilling of Inconel 718 with cryogenically treated drill-bit using Taguchi-Whale optimization algorithm[J]. Materials Today:Proceedings, 2022, 50: 1591-1598. doi: 10.1016/j.matpr.2021.09.121
    [7] Cuesta M, Aristimuño P, Garay A, et al. Heat transferred to the workpiece based on temperature measurements by IR technique in dry and lubricated drilling of Inconel 718[J]. Applied Thermal Engineering, 2016, 104: 309-318. doi: 10.1016/j.applthermaleng.2016.05.040
    [8] Liu J Y, Li A H, Zhang J C, et al. Performance of high-speed steel drills in wet drilling Inconel 718 superalloy[J]. Experimental Techniques, 2022: 1-12.
    [9] Han C, Luo M, Zhang D H, et al. Mechanistic modelling of worn drill cutting forces with drill wear effect coefficients[J]. Procedia CIRP, 2019, 82: 2-7. doi: 10.1016/j.procir.2019.04.332
    [10] Xue C, Chen W Y. The performances of different coated carbide drills when drilling a cast nickel-based alloy[C].Advanced Materials Research. Trans Tech Publications Ltd. , 2012, 497: 41-45.
    [11] Wolf T, Iovkov I, Biermann D. Influence of a discontinuous process strategy on microstructure and micro-hardness in drilling inconel 718[J]. Journal of Manufacturing and Materials Processing, 2021, 5(2): 43. doi: 10.3390/jmmp5020043
    [12] Venkatesan T, Jerald J, Pilligrin J C, et al. Experimental investigation on micro drilling of Inconel 718 super alloy[J]. International Journal of Machining and Machinability of Materials, 2018, 20(1): 48-63. doi: 10.1504/IJMMM.2018.089470
    [13] 王辉. 镍基粉末冶金高温合金钻削仿真与试验研究[D]. 济南: 济南大学, 2016.
    [14] Nagaraj M, Kumar A, Ezilarasan C, et al. Finite element modeling in drilling of Nimonic C-263 alloy using deform-3D[J]. Computer Modeling in Engineering & Sciences, 2019, 118(3): 679-692.
    [15] Biermann D, Bücker M, Tiffe M, et al. Experimental investigations for a simulative optimization of the cutting edge design of twist drills used in the machining of Inconel 718[J]. Procedia Manufacturing, 2017, 14: 8-16. doi: 10.1016/j.promfg.2017.11.002
    [16] Jiménez A, Arizmendi M, Sánchez J M. Extraction of tool wear indicators in peck-drilling of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(9-10): 2711-2720. doi: 10.1007/s00170-021-07058-7
    [17] Azim S, Gangopadhyay S, Mahapatra S S, et al. Role of PVD coating on wear and surface integrity during environment-friendly micro-drilling of Ni-based superalloy[J]. Journal of Cleaner Production, 2020, 272: 122741. doi: 10.1016/j.jclepro.2020.122741
    [18] Barros P C, Barbosa G F, Ventura C E H, et al. Tool wear analysis on drilling process of Inconel 718 superalloy [R]. SAE Technical Paper, 2020.
    [19] Imran M, Mativenga P T, Withers P J. Assessment of machining performance using the wear map approach in micro-drilling[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(1): 119-126.
    [20] Imran M, Mativenga P T, Kannan S. Ealuation of the effects of tool geometry on tool wear and surface integrity in the micro drilling process for Inconel 718 alloy[J]. International Journal of Machining and Machinability of Materials, 2012, 11(3): 244-62. doi: 10.1504/IJMMM.2012.046886
    [21] Wang Q, Zhang D H, Tang K, et al. A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications[J]. Journal of Cleaner Production, 2019, 234: 171-184. doi: 10.1016/j.jclepro.2019.06.148
    [22] Soo S L, Hood R, Aspinwall D K, et al. Machinability and surface integrity of RR1000 nickel based superalloy[J]. CIRP annals, 2011, 60(1): 89-92. doi: 10.1016/j.cirp.2011.03.094
    [23] Qiao Y, Guo P Q, Chen H T, et al. Investigation of machined surface properties and gool wear for drilling of nickel-based superalloy FGH97[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 562(1): 012142.
    [24] Lotfi M, Farid A A, Akbari J, et al. Evaluation of surface integrity when drilling Inconel 718 through experimental measurement and finite element analysis[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7): 4237-4248.
    [25] Herbert C, Axinte D, Hardy M, et al. Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations[J]. Machining Science and Technology, 2012, 16(1): 40-52. doi: 10.1080/10910344.2012.648520
    [26] Nie G C, Zhang X M, Zhang D, et al. An experimental study of the white layer formation during cryogenic assisted hard machining of AISI 52100 steel[J]. Procedia Cirp, 2018, 77: 223-226. doi: 10.1016/j.procir.2018.09.001
    [27] Du J, Liu Z Q, Lv S. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy[J]. Applied Surface Science, 2014, 292: 197-203. doi: 10.1016/j.apsusc.2013.11.111
    [28] 杜劲, 刘战强. 镍基粉末高温合金切削加工表面白层研究[J]. 稀有金属材料与工程, 2012, 41(S2): 698-702.
    [29] Imran M, Mativenga P T, Gholinia A, et al. Evaluation of surface integrity in micro drilling process for nickel-based superalloy[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(5): 465-476.
    [30] Azim S, Gangopadhyay S, Mahapatra S S, et al. Study of cutting forces and surface integrity in micro drilling of a Ni-based superalloy[J]. Journal of Manufacturing Processes, 2019, 45: 368-378. doi: 10.1016/j.jmapro.2019.07.016
    [31] Prashanth P, Hiremath S S. Machinability study and charcaterisation of holes machined using mechanical micromachining technique-micro drilling[J]. Adv. Mater. Technol., 2019, 5(2): 226-241.
    [32] Swain N, Kumar P, Srinivas G, et al. Mechanical micro-drilling of nimonic 80A superalloy using uncoated and TiAlN-coated micro-drills[J]. Materials and Manufacturing Processes, 2017, 32(13): 1537-1546. doi: 10.1080/10426914.2017.1279293
    [33] Venkatesan K, Nagendra K U, Anudeep C M, et al. Experimental investigation and parametric optimization on hole quality assessment during micro-drilling of Inconel 625 superalloy[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2283-2309. doi: 10.1007/s13369-020-04992-8
    [34] Baghlani V, Mehbudi P, Akbari J, et al. Ultrasonic assisted deep drilling of Inconel 738LC superalloy[J]. Procedia CIRP, 2013, 6: 571-576. doi: 10.1016/j.procir.2013.03.096
    [35] Singh M, Dhiman S, Singh H, et al. Assessment of positional error and hole quality during vibration-based drilling of aerospace alloy[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5621-5630. doi: 10.1007/s12206-021-1133-8
    [36] Khanna N, Agrawal C, Gupta M K, et al. Tool wear and hole quality evaluation in cryogenic drilling of inconel 718 superalloy[J]. Tribology International, 2020, 143: 106084. doi: 10.1016/j.triboint.2019.106084
    [37] Rosnan R, Murad M N, Azmi A I, et al. Effects of minimal quantity lubricants reinforced with nano-particles on the performance of carbide drills for drilling nickel-titanium alloys[J]. Tribology International, 2019, 136: 58-66. doi: 10.1016/j.triboint.2019.03.029
  • 加载中
图(9)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  6
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部