留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应GDSA-BPNN的选区激光熔化质量预测

董海 宋宇菲

董海, 宋宇菲. 基于自适应GDSA-BPNN的选区激光熔化质量预测[J]. 制造技术与机床, 2023, (8): 19-26. doi: 10.19287/j.mtmt.1005-2402.2023.08.003
引用本文: 董海, 宋宇菲. 基于自适应GDSA-BPNN的选区激光熔化质量预测[J]. 制造技术与机床, 2023, (8): 19-26. doi: 10.19287/j.mtmt.1005-2402.2023.08.003
DONG Hai, SONG Yufei. Selective laser melting quality prediction based on adaptive GDSA-BPNN[J]. Manufacturing Technology & Machine Tool, 2023, (8): 19-26. doi: 10.19287/j.mtmt.1005-2402.2023.08.003
Citation: DONG Hai, SONG Yufei. Selective laser melting quality prediction based on adaptive GDSA-BPNN[J]. Manufacturing Technology & Machine Tool, 2023, (8): 19-26. doi: 10.19287/j.mtmt.1005-2402.2023.08.003

基于自适应GDSA-BPNN的选区激光熔化质量预测

doi: 10.19287/j.mtmt.1005-2402.2023.08.003
基金项目: 国家自然科学基金项目(71672117);中央引导地方科技发展计划资助(2021JH6/10500149)
详细信息
    作者简介:

    董海,男,1971年生,博士,教授,研究方向为增材制造。E-mail:donghaizxh@163.com

    通讯作者:

    宋宇菲,女,1998年生,硕士研究生,研究方向为增材制造。E-mail:songyfei1020@163.com

  • 中图分类号: TH164

Selective laser melting quality prediction based on adaptive GDSA-BPNN

  • 摘要: 针对增材制造选区激光熔化(selective laser melting,SLM)零件的质量缺陷问题,提出一种基于自适应策略的多输入多输出反向传播神经网络(back propagation neural network,BPNN)模型预测SLM产品质量,解决传统方法不能自适应地调整超参数来适应不同搜索阶段的问题。首先确定SLM成型的重要工艺参数和质量指标,选择Huber函数作为BP模型的损失函数,构建含有结构风险最小化策略目标函数的BP模型;其次,建立基于自适应梯度下降搜索算法(gradient descent search algorithm, GDSA)与BPNN相结合的预测模型(GDSA-BPNN),选择3种不同学习率的策略放入自适应策略库,采用一种自适应机制优化BP模型的超参数;最后,将文章所提出的GDSA-BPNN模型与其他4种模型的预测结果进行对比,结果表明基于GDSA-BPNN模型的SLM零件质量预测方法具有良好的预测效果和较高的预测精度。

     

  • 图  1  BP神经网络模型结构

    图  2  SLM零件质量预测流程图

    图  3  各输入参数的MSE与迭代次数的变化曲线

    图  4  训练集、验证集和测试集的性能测试图

    图  5  SLM零件各参数实际输出与期望输出对比

    表  1  SLM处理AISil10Mg样品的工艺参数和质量性能样本

    输入参数输出参数
    激光功率/W扫描速度/(mm/s)重叠率/(%)舱口距离/mm相对密度硬度/HBV抗拉强度/MPa孔隙率/(%)
    3206000.25102.840.973 91194552.61
    3206000.3588.70.980 2130.8433.331.98
    3207500.2593.10.977 4124.4448.332.26
    3606000.251110.968 8127.2431.673.12
    3606000.3103.60.979135.2436.672.1
    3606000.3596.20.972 5116.4441.672.75
    3607500.25980.973 2129.84302.68
    3607500.391.40.981 7123.2441.671.83
    3609000.2588.90.973 61194202.64
    3609000.3830.979 9127.2431.672.01
    4006000.25116.40.955 9118.64204.41
    4006000.35100.90.981 2139.2438.331.88
    4007500.25104.70.972 2124.84302.78
    4007500.397.70.976 3127.4431.672.37
    4009000.2594.10.979 5125.4352.22.05
    4009000.387.80.965 1113.2383.113.49
    4009000.3581.50.975 8118.4408.182.42
    3207500.3580.70.977 7127.84452.23
    3209000.2581.80.981 7127.6443.331.83
    3209000.376.30.984 7127.8446.672.16
    3607500.3584.90.973 4128.84452.66
    4006000.3108.60.979 11314452.09
    3206000.395.50.980 1123.24501.99
    3207500.386.90.973 7123.2443.332.63
    3209000.3570.90.981 3122.64501.97
    3609000.3577.10.979 5122446.672.05
    4007500.3590.70.969 4120.8443.033.06
    下载: 导出CSV

    表  2  不同SLM预测模型下处理AISil10Mg样品的训练误差、验证误差和测试误差

    预测模型训练误差验证误差测试误差
    P-BP10.027 990.029 370.128 2
    P-BP20.041 310.063 790.066 8
    P-BP30.041 80.100 20.126
    BP0.064 410.148 30.147 2
    GDSA-BP0.021 430.026 550.065
    下载: 导出CSV
  • [1] Gibson I, Rosen D W, Stucker B, et al. Additive manufacturing technologies[M]. Switzerland: Springer, 2021: 13-17.
    [2] Sabuj M D. Selective laser melting part quality prediction and energy consumption optimization[D]. Manitoba: The University of Manitoba of Doctoral Dissertation, 2022.
    [3] Shipley H,McDonnell D,Culleton M,et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V:A review[J]. International Journal of Machine Tools and Manufacture,2018,128:1-20. doi: 10.1016/j.ijmachtools.2018.01.003
    [4] Li Z,Kucukkoc I,Zhang D Z,et al. Optimising the process parameters of selective laser melting for the fabrication of Ti6Al4V alloy[J]. Rapid Prototyping Journal,2018,24(1):150-159. doi: 10.1108/RPJ-03-2016-0045
    [5] 宋剑锋,宋有年,王文武,等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光,2022,49(2):81-94.
    [6] Cambria E,White B. Jumping NLP curves: A review of natural language processing research[J]. IEEE Computational Intelligence Magazine,2014,9(2):48-57. doi: 10.1109/MCI.2014.2307227
    [7] 韩顺杰,单新超,于爱君,等. 基于改进粒子群算法的工业机器人轨迹规划[J]. 制造技术与机床,2021(4):9-14. doi: 10.19287/j.cnki.1005-2402.2021.04.001
    [8] Wilson S W. The genetic algorithm and simulated evolution [M]. Routledge: Artificial life, 2019: 157-166.
    [9] Gudise V G, Venayagamoorthy G K. Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks[C]. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706). IEEE, 2003: 110-117.
    [10] Mirjalili S A,Hashim S Z M,Sardroudi H M. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm[J]. Applied Mathematics and Computation,2012,218(22):11125-11137. doi: 10.1016/j.amc.2012.04.069
    [11] Rumelhart D E,Hinton G E,Williams R J. Learning representations by back-propagating errors[J]. Nature,1986,323:533-536. doi: 10.1038/323533a0
    [12] Xue Y,Wang Y,Liang J. A self-adaptive gradient descent search algorithm for fully-connected neural networks[J]. Neurocomputing,2022,478(12):70-80.
    [13] Fogel D B. An introduction to simulated evolutionary optimization[J]. IEEE Transactions on Neural Networks,1994,5(1):3-14. doi: 10.1109/72.265956
    [14] Peng T,Lv J,Majeed A,et al. An experimental investigation on energy-effective additive manufacturing of aluminum parts via process parameter selection[J]. Journal of Cleaner Production,2021,279:123609. doi: 10.1016/j.jclepro.2020.123609
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-08-01

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部