留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学放电加工中气膜厚度及其影响研究

刘颢 阿达依·谢尔亚孜旦

刘颢, 阿达依·谢尔亚孜旦. 电化学放电加工中气膜厚度及其影响研究[J]. 制造技术与机床, 2023, (10): 9-16. doi: 10.19287/j.mtmt.1005-2402.2023.10.001
引用本文: 刘颢, 阿达依·谢尔亚孜旦. 电化学放电加工中气膜厚度及其影响研究[J]. 制造技术与机床, 2023, (10): 9-16. doi: 10.19287/j.mtmt.1005-2402.2023.10.001
LIU Hao, ADAYI Xieeryazidan. Study of gas film thickness and its influence on electrochemical discharge machining[J]. Manufacturing Technology & Machine Tool, 2023, (10): 9-16. doi: 10.19287/j.mtmt.1005-2402.2023.10.001
Citation: LIU Hao, ADAYI Xieeryazidan. Study of gas film thickness and its influence on electrochemical discharge machining[J]. Manufacturing Technology & Machine Tool, 2023, (10): 9-16. doi: 10.19287/j.mtmt.1005-2402.2023.10.001

电化学放电加工中气膜厚度及其影响研究

doi: 10.19287/j.mtmt.1005-2402.2023.10.001
基金项目: 国家自然科学基金(s51665056)
详细信息
    作者简介:

    刘颢,男,1999年生,硕士研究生,研究方向为电化学放电加工。E-mail:LH735568216@163.com

    通讯作者:

    阿达依·谢尔亚孜旦,男,1963年生,博士,教授,研究方向为微细加工、特种加工技术、现代设计理论与方法,已发表论文70余篇,EI收录20余篇。E-mail:Adayxj@126.com

  • 中图分类号: TQ171.6+2,O646.7

Study of gas film thickness and its influence on electrochemical discharge machining

  • 摘要: 玻璃作为一种非导电硬脆材料,在光学、生物医学、微机电系统等领域应用广泛。电化学放电加工作为针对绝缘硬脆材料的有效微细加工技术,可以在玻璃上进行有效的微结构加工。在电化学放电加工中,放电现象通过击穿气膜产生,气膜作为加工过程中最重要的介质,其质量是形成良好的表面微结构的重要因素。文章研究的重点是气膜特性及其对放电能量分布的影响。研究采用三因子三水平的全因子试验方法,以电源、占空比、频率三种电源参数为影响因子,气膜厚度为响应进行试验研究,获得最佳气膜质量的工艺参数组合。此外,在石英玻璃和K9光学玻璃两种玻璃上进行了微小孔加工的实验。结果表明,最佳工艺参数组合下能获得更薄气膜,同时也是获得更小径向过切、大的深径比、圆度误差较小的微小孔的最佳条件。

     

  • 图  1  电化学放电加工实验平台

    图  2  电化学放电加工气膜图像捕获及加工系统示意图

    图  3  气泡生长融合与气膜成形过程

    图  4  电化学放电加工过程电压-电流特性曲线

    图  5  电化学放电加工过程

    图  6  气膜厚度均值的主效应图

    图  7  电压-占空比和频率-占空比的气膜厚度交互效应图

    图  8  极端实验参数和最佳工艺参数下的气膜厚度(插图为计算气膜厚度的边缘检测图像)

    图  9  不同工艺参数电化学放电加工两种玻璃的入口过切

    图  10  电化学放电加工微小孔三维形貌

    表  1  电化学放电加工各实验装置及材料参数

    名称参数
    工件材料光学玻璃、石英玻璃(h=1 mm)
    工具电极碳化钨(D=300 μm)
    辅助阳极石墨(50 mm×40 mm×4 mm)
    电极间距/cm3.5
    电解液NaOH
    电解液浓度/(mol/L)1
    电解液水平/mm5
    下载: 导出CSV

    表  2  考虑水平变化的工艺参数

    因素水平一水平二水平三
    A:电压/V505560
    B:频率/kHz202530
    C:占空比/(%)607080
    下载: 导出CSV

    表  3  气膜厚度的方差分析

    来源自由度Adj SSAdj MSFP
    模型1845 985.82 554.871.110.000
    线性633 495.855 826155.390.000
    A231 108.115 554.0432.950.000
    B27.23.60.100.906
    C22 380.51 190.333.130.000
    2 因子交互作用1212 490.01 040.828.970.000
    A*B4295.974.02.060.179
    A*C411 187.32 796.877.850.000
    B*C41 006.8251.77.010.010
    误差8287.435.9
    合计2646 273.2
    下载: 导出CSV

    表  4  已确认的工艺参数组合

    因素最佳工艺参数组合极端工艺参数组合
    电压/V5060
    频率/kHz2025
    占空比/(%)8060
    下载: 导出CSV

    表  5  实验结果汇总

    因素石英玻璃光学玻璃
    最佳极端最佳极端
    径向过切/μm69 150 100 169
    圆度误差/μm721317.5
    深径比0.5960.4000.5980.458
    下载: 导出CSV
  • [1] Tölke R, Bieberle-Hütter A, Evans A, et al. Processing of foturan glass ceramic substrates for micro-solid oxide fuel cells[J]. Journal of the European Ceramic Society,2012,32(12):3229-3238. doi: 10.1016/j.jeurceramsoc.2012.04.006
    [2] Ziaie B,Baldi A,Ming L,et al. Hard and soft micromachining for BioMEMS:review of techniques and examples of applications in microfluidics and drug delivery[J]. Advanced Drug Delivery Reviews,2004,56(2):145-172. doi: 10.1016/j.addr.2003.09.001
    [3] Arab J,Mishra D K,Kannojia H K,et al. Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS packaging[J]. Journal of Materials Processing Technology,2019,271:542-553. doi: 10.1016/j.jmatprotec.2019.04.032
    [4] Stjernström M,Roeraade J. Method for fabrication of microfluidic systems in glass[J]. Journal of Micromechanics and Microengineering,1998,8(1):33. doi: 10.1088/0960-1317/8/1/006
    [5] Perveen A, Molardi C. Machining of glass materials: An overview[J]. Advanced Manufacturing Technologies: Modern Machining, Advanced Joining, Sustainable Manufacturing, 2017: 23-47.
    [6] Ahmed N,Darwish S,Alahmari A M. Laser ablation and laser-hybrid ablation processes:a review[J]. Materials and Manufacturing Processes,2016,31(9):1121-1142. doi: 10.1080/10426914.2015.1048359
    [7] Sharma A,Jain V,Gupta D. Comparative analysis of chipping mechanics of float glass during rotary ultrasonic drilling and conventional drilling:For multi-shaped tools[J]. Machining Science and Technology,2019,23(4):547-568. doi: 10.1080/10910344.2019.1575402
    [8] Huu Loc P,Shiou F J,Yu Z R,et al. Investigation of optimal air-driving fluid jet polishing parameters for the surface finish of N-BK7 optical glass[J]. Journal of Manufacturing Science and Engineering,2013,135(1):011015. doi: 10.1115/1.4023368
    [9] Wang Z,Li H N,Yu T B,et al. Analytical model of dynamic and overlapped footprints in abrasive air jet polishing of optical glass[J]. International Journal of Machine Tools and Manufacture,2019,141:59-77. doi: 10.1016/j.ijmachtools.2019.03.005
    [10] Kumar S,Dvivedi A. On effect of tool rotation on performance of rotary tool micro-ultrasonic machining[J]. Materials and Manufacturing Processes,2019,34(5):475-486. doi: 10.1080/10426914.2018.1512130
    [11] Foucault M L. Experiments with the light of the voltaic arc[J]. Journal of the Franklin Institute,1849,48(1):50-52.
    [12] Kurafuji H,Suda H. Electrical discharge drilling of glass[J]. Ann. CIRP,1968,16:415-419.
    [13] Wüthrich R,Bleuler H. A model for electrode effects using percolation theory[J]. Electrochimica Acta,2004,49(9-10):1547-1554. doi: 10.1016/j.electacta.2003.11.014
    [14] Wüthrich R,Hof L A,Lal A,et al. Physical principles and miniaturization of spark assisted chemical engraving (SACE)[J]. Journal of Micromechanics and Microengineering,2005,15(10):S268. doi: 10.1088/0960-1317/15/10/S03
    [15] Cheng C P,Wu K L,Mai C C,et al. Study of gas film quality in electrochemical discharge machining[J]. International Journal of Machine Tools and Manufacture,2010,50(8):689-697. doi: 10.1016/j.ijmachtools.2010.04.012
    [16] Kolhekar K R,Sundaram M. Study of gas film characterization and its effect in electrochemical discharge machining[J]. Precision Engineering,2018,53:203-211. doi: 10.1016/j.precisioneng.2018.04.002
    [17] Singh T,Dvivedi A. Impact of gas film thickness on the performance of RM-ECDM process during machining of glass[J]. Materials and Manufacturing Processes,2022,37(6):652-663. doi: 10.1080/10426914.2021.1945092
    [18] Goud M,Sharma A K,Jawalkar C. A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate[J]. Precision Engineering,2016,45:1-17. doi: 10.1016/j.precisioneng.2016.01.007
    [19] Wei C,Xu K,Ni J,et al. A finite element based model for electrochemical discharge machining in discharge regime[J]. The International Journal of Advanced Manufacturing Technology,2011,54:987-995. doi: 10.1007/s00170-010-3000-0
    [20] Kolhekar K,Sundaram M. A multiphase simulation study of electrochemical discharge machining of glass[J]. The International Journal of Advanced Manufacturing Technology,2019,105:1597-1608. doi: 10.1007/s00170-019-04318-5
    [21] Leyva-Bravo J,Chiñas-Sanchez P,Hernandez-Rodriguez A,et al. Electrochemical discharge machining modeling through different soft computing approaches[J]. The International Journal of Advanced Manufacturing Technology,2020,106:3587-3596. doi: 10.1007/s00170-019-04766-z
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  6
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 录用日期:  2023-08-14

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部