留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直线电机运动系统输入到状态稳定性分析

徐永明 曹向东 李旭 刘海波

徐永明, 曹向东, 李旭, 刘海波. 直线电机运动系统输入到状态稳定性分析[J]. 制造技术与机床, 2023, (11): 34-38. doi: 10.19287/j.mtmt.1005-2402.2023.11.005
引用本文: 徐永明, 曹向东, 李旭, 刘海波. 直线电机运动系统输入到状态稳定性分析[J]. 制造技术与机床, 2023, (11): 34-38. doi: 10.19287/j.mtmt.1005-2402.2023.11.005
XU Yongming, CAO Xiangdong, LI Xu, LIU Haibo. Input-to-state stability analysis of linear motor motion systems[J]. Manufacturing Technology & Machine Tool, 2023, (11): 34-38. doi: 10.19287/j.mtmt.1005-2402.2023.11.005
Citation: XU Yongming, CAO Xiangdong, LI Xu, LIU Haibo. Input-to-state stability analysis of linear motor motion systems[J]. Manufacturing Technology & Machine Tool, 2023, (11): 34-38. doi: 10.19287/j.mtmt.1005-2402.2023.11.005

直线电机运动系统输入到状态稳定性分析

doi: 10.19287/j.mtmt.1005-2402.2023.11.005
详细信息
    作者简介:

    徐永明,男,1978年生,高级工程师,研究方向为机床数控技术。E-mail:ymx_sy@163.com

    通讯作者:

    徐永明,男,1978年生,高级工程师,研究方向为机床数控技术。E-mail:ymx_sy@163.com

  • 中图分类号: TM359.4

Input-to-state stability analysis of linear motor motion systems

  • 摘要: 直线电机是一种典型的直接驱动系统,具有高速度、高精度和大推力的优点,适用于各种高端装备中的精密直线运动场合。然而,直线电机运动系统的“零传动”特性,使得负载变化、非线性摩擦力、推力波动等扰动因素直接作用于系统,进而严重影响系统的性能和运动精度。为了分析扰动对系统状态的影响,针对直线电机运动系统进行建模并研究系统的输入到状态稳定性分析问题,提出一种基于李雅普诺夫方法的直线电机运动系统输入到状态稳定性分析方法,建立控制器增益与系统输入到状态稳定性之间的关系,为控制器增益的选取提供理论支持。

     

  • 图  1  永磁同步直线电机矢量图

    图  2  系统跟踪误差稳定曲线

    表  1  保证系统输入到状态稳定的${K_{\rm{P}}}$最小值

    ${K_{\rm{P}}}$ ${K_{\rm{I}}}$
    0.01 0.1 1 10
    $\alpha $ 0.01 0.826 9 0.827 1 0.829 4 0.852 6
    0.05 4.133 6 4.135 9 4.159 0
    0.1 8.268 0 8.291 3
    0.15 12.399 1 12.422 4
    0.2 16.529 1 16.552 4
    下载: 导出CSV
  • [1] 叶云岳. 直线电机原理与应用[M]. 北京:机械工业出版社,2000.
    [2] 王利. 现代直线电机关键控制技术及其应用研究[D]. 杭州:浙江大学,2012.
    [3] Yang R,Li L Y,Wang M Y,et al. Force ripple estimation and compensation of PMLSM with incremental extended state modeling-based Kalman filter:a practical tuning method[J]. IEEE Access,2019,7:108331-108342. doi: 10.1109/ACCESS.2019.2933627
    [4] Zhang W J,Nan N,Yang Y,et al. Force ripple compensation in a PMLSM position servo system using periodic adaptive learning control[J]. ISA Transactions,2019,95:266-277. doi: 10.1016/j.isatra.2019.04.032
    [5] Liu Y D,Wang M Y,Zeng G,et al. An improved method for force ripple compensation of PMLSM based on an incremental kalman filter[C]//2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). IEEE,2021:1-4.
    [6] Cho K,Nam K. System identification method based on a disturbance observer using symmetric reference trajectories in PMLSM-based motion systems[J]. IEEE Access,2020,8:216197-216209. doi: 10.1109/ACCESS.2020.3042343
    [7] Zhang G Q,Zhang H,Li B X,et al. Auxiliary model compensated RESO-based proportional resonant thrust ripple suppression for PMLSM drives[J]. IEEE Transactions on Transportation Electrification,2022,9(2).
    [8] 程仕祥,夏链,韩江. 基于 ICSO 模糊 PID 控制的直线电机控制研究[J]. 合肥工业大学学报:自然科学版,2020,43(10):1307-1312.
    [9] Man F,Wang R K,Chen Q Y,et al. Research on speed sensorless control of permanent magnet linear synchronous motor based on PID neural network[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS). IEEE,2019:1-4.
    [10] Zeng D H,Ge Q X,Zhang L. Decoupling control of three-dimensional electromagnetic forces in linear induction motors based on novel equivalent circuit[J]. IEICE Electronics Express,2023,20(13):20230219. doi: 10.1587/elex.20.20230219
    [11] Qu L,Duan Y,Du L. An enhanced linear extended state observer based sensorless control for PMSM drives[C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC),2021:2485-2489.
    [12] Liu X F,Cao H Y,Wei W,et al. A practical precision control method base on linear extended state observer and friction feedforward of permanent magnet linear synchronous motor[J]. IEEE Access,2020,8:68226-68238. doi: 10.1109/ACCESS.2020.2986711
    [13] Huang M F,Deng Y T,Li H W,et al. Integrated uncertainty/disturbance suppression based on improved adaptive sliding mode controller for PMSM drives[J]. Energies,2021,14(20):6538. doi: 10.3390/en14206538
    [14] Chen Z,Yao B,Wang Q F. µ-Synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics:a case study[J]. IEEE/ASME Transactions on Mechatronics,2014,20(3):1482-1490.
    [15] Shao K,Zheng J C,Wang H,et al. Tracking control of a linear motor positioner based on barrier function adaptive sliding mode[J]. IEEE Transactions on Industrial Informatics,2021,17(11):7479-7488. doi: 10.1109/TII.2021.3057832
    [16] Liu Z T,Gao H J,Yu X H,et al. B-spline wavelet neural network-based adaptive control for linear motor-driven systems via a novel gradient descent algorithm[J]. IEEE Transactions on Industrial Electronics,2023:1-10.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 修回日期:  2023-06-11
  • 网络出版日期:  2023-11-07

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部