留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强亚稳β钛合金的变形损伤行为研究现状

朱辰哲 付秀丽 王立群 袁丕琪 门秀花

朱辰哲, 付秀丽, 王立群, 袁丕琪, 门秀花. 高强亚稳β钛合金的变形损伤行为研究现状[J]. 制造技术与机床, 2024, (3): 76-84. doi: 10.19287/j.mtmt.1005-2402.2024.03.011
引用本文: 朱辰哲, 付秀丽, 王立群, 袁丕琪, 门秀花. 高强亚稳β钛合金的变形损伤行为研究现状[J]. 制造技术与机床, 2024, (3): 76-84. doi: 10.19287/j.mtmt.1005-2402.2024.03.011
ZHU Chenzhe, FU Xiuli, WANG Liqun, YUAN Peiqi, MEN Xiuhua. Research status of deformation damage behavior of high strength metastable β titanium alloys[J]. Manufacturing Technology & Machine Tool, 2024, (3): 76-84. doi: 10.19287/j.mtmt.1005-2402.2024.03.011
Citation: ZHU Chenzhe, FU Xiuli, WANG Liqun, YUAN Peiqi, MEN Xiuhua. Research status of deformation damage behavior of high strength metastable β titanium alloys[J]. Manufacturing Technology & Machine Tool, 2024, (3): 76-84. doi: 10.19287/j.mtmt.1005-2402.2024.03.011

高强亚稳β钛合金的变形损伤行为研究现状

doi: 10.19287/j.mtmt.1005-2402.2024.03.011
基金项目: 国家自然科学基金面上项目(52175408);山东省自然科学基金重点项目(ZR2020KE022)
详细信息
    作者简介:

    朱辰哲,男,2000年生,硕士研究生,研究方向为先进制造技术与装备。E-mail:2722460229@qq.com

    通讯作者:

    付秀丽,女,1978年生,教授,研究方向为高端制造工艺与装备。E-mail:me_fuxl@ujn.edu.cn

  • 中图分类号: TG146.2

Research status of deformation damage behavior of high strength metastable β titanium alloys

  • 摘要: 亚稳β钛合金具有密度小、比强度高、可塑性好以及优良的耐腐蚀等力学和物理学性能,已经广泛应用在航空航天、生物医学和石油化工等领域。为实现对新一代高强度、高塑性钛合金的研发与应用,必须明确亚稳β钛合金力学性能与其变形损伤行为之间的联系。文章分析了亚稳β钛合金在变形损伤过程中的组织演变,概述了亚稳β钛合金的各种变形行为及各变形之间的联系,总结了不同的变形行为影响下对亚稳β合金力学性能的提升;然后阐述了亚稳β钛合金在动载荷下的损伤行为及其内部的组织演变,探讨了微观损伤对合金强化与失效之间的联系,以期对新型钛合金的研发与优化提出新见解。

     

  • 图  1  亚稳β钛合金变形机制演化示意图[810]

    图  2  双光束TEM明场像显示Ti-30V-15Cr-2Al钛合金室温形变样品内的位错缠结[15]

    图  3  冲击载荷变形过程中的微观组织演变[23]

    图  4  不同应变速率的Ti-1023合金的EBSD能带对比[24]

    图  5  针状α''马氏体的晶粒细化演变[26]

    图  6  多级孪晶体系的形成顺序的3D视图和剖视图[28]

    图  7  Ti-7Mo-3Cr合金随应变增加时的微观结构演变[29]

    图  8  亚稳β钛合金中应力诱发马氏体和{332}孪晶的耦合[35]

    图  9  层状显微组织Ti-54432合金在拉伸过程中的裂纹扩展[38]

    图  10  孔洞汇聚与裂纹的扩展[39]

    图  11  ASB中的裂纹演化[41]

    图  12  绝热剪切带内部及周围区域的微观组织[4244]

    图  13  绝热剪切带内的微观结构[46]

    表  1  关于{332}<113>孪晶的不同形成机制[1821]

    学者 理论 模型 内容 示意图
    Richman R[18] 剪切与重组
    机制
    {332}孪晶结构模型 基于刚性球模型假设说明了{332}孪晶结构的形成,但在孪晶/基体界面易产生晶格畸变,形成高的界面能。
    Takemoto Y[19] 松弛重组 ${\text{β}} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over{\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}}{\text{α}} $''马氏体机制 改进了Richman模型的高界面能缺点,同时说明{332}孪晶是由α''相转变而来,而α''相是由基体产生。
    Kawabata T[20] 位错机制 位错-孪晶
    模型
    说明{332}孪晶来自位错分解和不全位错的
    滑移,进而说明位错过程中发生了原子的
    重组。
    Tobe H[21] 晶格不稳定性 基于原子对移动的{332}孪晶结构模型 基于晶体学说明了{332}孪晶结构的形成,但此理论难于说明微观组织的形成。
    下载: 导出CSV
  • [1] 陈玮,刘运玺,李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报,2020,40(3):63-76.
    [2] 杨冬雨,付艳艳,惠松骁,等. 高强高韧钛合金研究与应用进展[J]. 稀有金属,2011,35(4):575-580.
    [3] Banerjee D,Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia,2013,61(3):844-879. doi: 10.1016/j.actamat.2012.10.043
    [4] Ren L,Xiao W,Kent D,et al. Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure[J]. Scripta Materialia,2020,184:6-11. doi: 10.1016/j.scriptamat.2020.03.039
    [5] Zhao G H,Xu X,Dye D,et al. Microstructural evolution and strain-hardening in TWIP Ti alloys[J]. Acta Materialia,2020,183:155-164. doi: 10.1016/j.actamat.2019.11.009
    [6] Kolli R P,Devaraj A. A review of metastable beta titanium alloys[J]. Metals,2018,8(7):506. doi: 10.3390/met8070506
    [7] Sun F,Zhang J Y,Marteleur M,et al. Deformation mechanisms in a metastable β titanium alloy showing combine[J]. Acta Materialia,2013,61(17):6406. doi: 10.1016/j.actamat.2013.07.019
    [8] Mantri S A,Sun F,Choudhuri D,et al. Deformation induced hierarchical twinning coupled with omega transformation in a metastable β-Ti alloy[J]. Scientific Reports,2019,9(1):1334. doi: 10.1038/s41598-018-37865-0
    [9] Yang Y,Castany P,Hao Y L,et al. Plastic deformation via hierarchical nano-sized martensitic twinning in the metastable β Ti-24Nb-4Zr-8Sn alloy[J]. Acta Materialia,2020,194:27-39. doi: 10.1016/j.actamat.2020.04.021
    [10] Zhu W,Tan C,Xiao R,et al. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation[J]. Journal of Materials Science & Technology,2020,57:188-196.
    [11] 赖敏杰,李金山. 亚稳β钛合金的变形孪晶和应力诱发相变[J]. 中国有色金属学报,2019,29(9):2185-2191.
    [12] Zafari A,Wei X S,Xu W,et al. Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion:the role played by stress induced martensitic transformation[J]. Acta Materialia,2015,97:146-155. doi: 10.1016/j.actamat.2015.06.042
    [13] Hua K,Zhang Y,Gan W,et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy[J]. International Journal of Plasticity,2019,119:200-214. doi: 10.1016/j.ijplas.2019.03.011
    [14] Zhang J,Sun F,Chen Z,et al. Strong and ductile beta Ti–18Zr–13Mo alloy with multimodal twinning[J]. Materials Research Letters,2019,7(6):251-257. doi: 10.1080/21663831.2019.1595763
    [15] Li Y G,Blenkinsop P A,Loretto M H,et al. Effect of aluminium on deformation structure of highly stabilised β-Ti–V–Cr alloys[J]. Materials Science and Technology,1999,15(2):151-155. doi: 10.1179/026708399101505680
    [16] Huang X,Li J S,Lai M J. Influences of grain size on the deformation behavior of a twinning-induced plasticity metastable β titanium alloy[J]. Journal of Alloys and Compounds,2023,937:168274. doi: 10.1016/j.jallcom.2022.168274
    [17] Blackburn M J,Feeny J A. Stress-induced transformations in Ti-Mo alloys[J]. Journal of the Institute of Metals,1971,99:132-134.
    [18] Richman R. Deformation twinning[M].USA: Gordon and Breach Science Publishers,1964.
    [19] Takemoto Y,Hida M,Sakakibara A. Change of deformation mode caused by aging of Ti-14 mass%Mo alloy single crystals and embrittlement mechanism due to the ω-phase[J]. Journal of the Japan Institute of Metals,1989,53(10):1004-1012.
    [20] Kawabata T,Kawasaki S,Izumi O. Mechanical properties of Ti-Nb-Ta single crystals at cryogenic temperatures[J]. Acta Materialia,1998,46(8):2705-2715. doi: 10.1016/S1359-6454(97)00475-8
    [21] Tobe H,Kim H Y,Inamura T,et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization Journal[J]. Materials Research Letters. 2020,8(7),247.
    [22] Castany P,Yang Y,Bertrand E,Gloriant T. Reversion of a parent {130}<310>{α''} martensitic twinning system at the origin of {332}<113>{β} twins observed in metastable β titanium alloys[J]. Physical Review Letters,2016,117(24).
    [23] An X L,Jiang W T,Ni S,et al. Origin of {332}<113> twinning and twin-twin intersections in a shock load metastable β Ti-12Mo alloy[J]. Materials Characterization,2023:112674.
    [24] Ma X K,Li J H,Chen Z,et al. Abnormal work hardening in a TRIP-assisted metastable β titanium alloy under high strain rate loading[J]. Materials Science and Engineering:A,2022:838.
    [25] Zhao X L,Wang Y,Xue H,et al. The effect of strain rate on deformation-induced α′ phase transformation and mechanical properties of a metastable β-type Ti–30Zr–5Mo alloy[J]. Journal of Alloys and Compounds,2022:894.
    [26] Zafari A,Xia K. Progress in severe plastic deformation of metastable beta Ti alloys[J]. Advanced Engineering Materials,2020,22(1):201900471.
    [27] Chen K,Fan Q B,Yang L,et al. A novel sequential mechanism associated with stress-induced β→ω→β+α phase transformation in Ti–6Mo-3.5 Cr–1Zr titanium alloy[J]. Materials Science and Engineering:A,2022:849.
    [28] Zhang J Y,Fu Y Y,Wu Y J,et al. Hierarchical {332}< 113> twinning in a metastable β Ti-alloy showing tolerance to strain localization[J]. Materials Research Letters,2020,8(7):247-253. doi: 10.1080/21663831.2020.1745920
    [29] Gao J H,Huang Y H,Guan D K,et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate[J]. Acta Materialia,2018,152:301-314. doi: 10.1016/j.actamat.2018.04.035
    [30] Xing H,Sun J. Mechanical twinning and omega transition by <111> {112} shear in a metastable beta titanium alloy[J]. Applied Physics Letters,2008,93(3):031908. doi: 10.1063/1.2959183
    [31] Lai M J,Tasan C C,Raabe D. On the mechanism of {332} twinning in metastable β titanium alloys[J]. Acta Materialia,2016,111:173-186. doi: 10.1016/j.actamat.2016.03.040
    [32] Hanada S,Izumi O. Correlation of tensile properties,deformation modes,and phase stability in commercial β-phase titanium alloys[J]. Metallurgical and Materials Transactions A,1987,18:265-271. doi: 10.1007/BF02825707
    [33] Marteleur M,Sun F,Gloriant T,et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects[J]. Scripta Materialia,2012,66(10):749-752. doi: 10.1016/j.scriptamat.2012.01.049
    [34] Fu Y,Xiao W,Kent D,et al. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy[J]. Scripta Materialia,2020,187:285-290. doi: 10.1016/j.scriptamat.2020.06.029
    [35] Xiao J F,He B B,Tan C W. Effect of martensite on {332} twinning formation in a metastable beta titanium alloy[J]. Journal of Alloys and Compounds,2022:895.
    [36] Gao M,Guo E,Chen Z,et al. Revealing the role of micropore defects in tensile deformation of a B4Cp/Al composite using an actual three-dimensional model[J]. Journal of Materials Research and Technology,2023,22:3146-3155. doi: 10.1016/j.jmrt.2022.12.145
    [37] Curran D R,Seaman L,Shockey D A. Dynamic failure in solids[J]. Physics Today,1977,30(1):46-55. doi: 10.1063/1.3037367
    [38] Wang J,Zhao Y Q,Zhou W,et al. In-situ study on tensile deformation and damage evolution of metastable β titanium alloy with lamellar microstructure[J]. Materials Science and Engineering:A,2021,824:141790. doi: 10.1016/j.msea.2021.141790
    [39] Qin D Y,Miao Y G,Li Y L. Formation of adiabatic shearing band for high-strength Ti-5553 alloy:A dramatic thermoplastic microstructural evolution[J]. Defence Technology,2022,18(11):2045-2051. doi: 10.1016/j.dt.2022.06.010
    [40] Wang J,Zhao Y Q,Zhao Q Y,et al. Comparison on impact toughn-ess of high-strength metastable β titanium alloy with bimoda-l and lamellar microstructures[J]. Metals,2022,12(2):271. doi: 10.3390/met12020271
    [41] Liu X,Zhou Y,Zhu X J,et al. The failure mechanism at adiabatic shear bands of titanium alloy:high-precision survey using precession electron diffraction and geometrically necessary dislocation density calculation[J]. Materials Science and Engineering:A,2019,746:322-331. doi: 10.1016/j.msea.2019.01.016
    [42] Yang H L,Wang D D,Zhu X J,et al. Dynamic compression-induced twins and martensite and their combined effects on the adiabatic shear behavior in a Ti-8.5Cr-1.5Sn alloy[J]. Materials Science and Engineering:A,2019,759:203-209. doi: 10.1016/j.msea.2019.05.040
    [43] 易湘斌,张俊喜,李宝栋,等. 高温、高应变率下TB6钛合金的动态压缩性能[J]. 稀有金属材料与工程,2019,48(4):1220-1224.
    [44] Chen K,Fan Q B,Yang L,et al. Deciphering the microstructural evolution and adiabatic shearing behavior of the titanium alloy with stress-induced ω phase transformation during dynamic compression[J]. Materials & Design,2022,221:110939.
    [45] Dai J C,Min X H,Wang L. Dynamic response and adiabatic shear behavior of β-type Ti–Mo alloys with different deformation modes[J]. Materials Science and Engineering:A,2022,857:144108. doi: 10.1016/j.msea.2022.144108
    [46] Zhan H Y,Zeng W D,Wang G,et al. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures[J]. Materials Characterization,2015,102:103-113. doi: 10.1016/j.matchar.2015.02.017
    [47] Rittel D,Landau P,Venkert A. Dynamic recrystallization as a potential cause for adiabatic shear failure[J]. Physical Review Letters,2008,101(16):165501. doi: 10.1103/PhysRevLett.101.165501
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  9
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 录用日期:  2023-10-13
  • 修回日期:  2023-03-18

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部