留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜电解阴极钛板碳化硅悬浮液超声波协同清洗研究

蒋培民 吴张永 朱启晨 蒋佳骏 杨文勇 张刚

蒋培民, 吴张永, 朱启晨, 蒋佳骏, 杨文勇, 张刚. 铜电解阴极钛板碳化硅悬浮液超声波协同清洗研究[J]. 制造技术与机床, 2024, (3): 140-146. doi: 10.19287/j.mtmt.1005-2402.2024.03.020
引用本文: 蒋培民, 吴张永, 朱启晨, 蒋佳骏, 杨文勇, 张刚. 铜电解阴极钛板碳化硅悬浮液超声波协同清洗研究[J]. 制造技术与机床, 2024, (3): 140-146. doi: 10.19287/j.mtmt.1005-2402.2024.03.020
JIANG Peimin, WU Zhangyong, ZHU Qichen, JIANG Jiajun, YANG Wenyong, ZHANG Gang. Research on ultrasonic synergistic cleaning of copper electrode cathode titanium plate silicon carbide suspension[J]. Manufacturing Technology & Machine Tool, 2024, (3): 140-146. doi: 10.19287/j.mtmt.1005-2402.2024.03.020
Citation: JIANG Peimin, WU Zhangyong, ZHU Qichen, JIANG Jiajun, YANG Wenyong, ZHANG Gang. Research on ultrasonic synergistic cleaning of copper electrode cathode titanium plate silicon carbide suspension[J]. Manufacturing Technology & Machine Tool, 2024, (3): 140-146. doi: 10.19287/j.mtmt.1005-2402.2024.03.020

铜电解阴极钛板碳化硅悬浮液超声波协同清洗研究

doi: 10.19287/j.mtmt.1005-2402.2024.03.020
基金项目: 国家自然科学基金(51165012);昆明理工大学分析测试基金(2022M20212203143)
详细信息
    作者简介:

    蒋培民,男,1998年生,硕士研究生,研究方向超声清洗、光整加工。E-mail:1843569621@qq.com

    通讯作者:

    吴张永,男,1963年生,教授、博士研究生导师,从事流体传动与控制、机械制造、有色金属矿山及冶金装备领域的教学及科研工作,已发表学术论文100余篇,申请专利200余项,其中授权国家发明专利20余项。E-mail:zhyongwu63@163.com

  • 中图分类号: TG178

Research on ultrasonic synergistic cleaning of copper electrode cathode titanium plate silicon carbide suspension

  • 摘要: 铜电解阴极钛板作为铜电解工艺的重要组成部分,其表面质量对电解质量和效率及钛板本身使用寿命有显著影响。针对此问题,采用碳化硅悬浮液超声波协同清洗技术对钛板进行简单、高效、环保的表面处理。通过铝箔腐蚀法探究了最佳清洗参数,分析了清洗过程中的协同效应及其作用机理。通过SEM+EDS和接触角测量仪对钛板表面清洁度、微观形貌和湿润性进行表征和评价。结果表明:距离换能器78 mm、碳化硅颗粒质量分数为0.05%,粒径为70 nm、pH值为中性、温度为55 ℃时清洗效果最佳;碳化硅悬浮液作为清洗介质,其协同效应可以明显提高清洗效率,改善钛板表面质量;清洗前后的对比表明,协同清洗能够有效地去除钛板表面的污染物,提高表面洁净度和湿润性,恢复钛板表面微观形貌及金属光泽。研究为优化钛板清洗工艺提供参考依据。

     

  • 图  1  不同颗粒下的铝箔腐蚀率

    图  2  超声能量位置变化图

    图  3  铝箔腐蚀法实验示意图

    1—超声波发生器;2—清洗槽;3—固定支撑架;4—悬浮液;5—带固定架的铝箔纸;6—换能器;7—电热丝。

    图  4  铝箔腐蚀率与距换能器距离的关系

    图  5  不同粒径及质量分数的铝箔腐蚀率

    图  6  不同pH值下铝箔的腐蚀率

    图  7  不同温度下铝箔的腐蚀率

    图  8  清洗前后洁净度

    图  9  清洗前后表面接触角

    图  10  清洗前后SEM微观表面形貌

    图  11  EDS能谱图

    表  1  钛板表面元素组成及占比

    元素 清洗前 清洗后
    质量百分比/
    (%)
    原子数量百分比/
    (%)
    质量百分比/
    (%)
    原子数量百分比/
    (%)
    C 13.29 29.67 2.84 7.25
    N 1.48 2.83
    O 27.06 45.36 33.82 64.93
    Na 0.90 1.05 0.38 0.51
    Al 0.33 0.32 0.04 0.04
    Si 1.00 0.96 0.14 0.15
    S 1.54 1.29
    Ti 13.17 7.37 24.73 15.86
    V 0.05 0.03 0.06 0.04
    Fe 1.98 0.95 0.12 0.07
    Cu 0.44 0.19 0.16 0.08
    As 10.44 3.74 9.97 4.08
    Sb 28.32 6.24 27.74 7.00
    下载: 导出CSV
  • [1] 华宏全,黄太祥,徐瑞东,等. 浅谈不锈钢阴极在云铜的生产试验及应用[J]. 中国有色冶金,2007(5):45-48. doi: 10.3969/j.issn.1672-6103.2007.05.011
    [2] 殷胜民. 电解锰阴极板超声波清洗机的研制[D]. 湘潭:湘潭大学,2012.
    [3] Kravchenko I N,Amelin S S,Kurmenev D V,et al. Formation of the working flux in an abrasive jet for steam cleaning[J]. Russian Engineering Research,2022,42(7):685-688. doi: 10.3103/S1068798X22070176
    [4] Varshney P,Mohapatra S S. Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique[J]. Tribology International,2018,123(1):17-25.
    [5] GB/T 39293–2000《工业清洗术语和分类》[J]. 中国洗涤用品工业,2021(3):70-77.
    [6] Mat-Shayuti M,Tuan Ya T M Y S ,Abdullah M Z,et al. Progress in ultrasonic oil-contaminated sand cleaning:a fundamental review[J]. Environmental Science and Pollution Research International,2019,26(26):26419-26438.
    [7] 王振华. 超声波清洗技术[M]. 武汉:武汉理工大学出版社,2019.
    [8] 李璐,李家成,王佳豪,等. 超声波清洗技术在工业领域的应用研究进展[J]. 应用化工,2021,50(3):759-764. doi: 10.3969/j.issn.1671-3206.2021.03.041
    [9] 黄志超,涂林鹏,刘举平,等. 超声波清洗技术及设备研究进展[J]. 华东交通大学学报,2020,37(3):1-9.
    [10] Sarasua Miranda J A,Ruiz-Rubio L,Aranzabe Basterrechea E,et al. Non-immersion ultrasonic cleaning:An efficient green process for large surfaces with low water consumption[J]. Processes,2021,9(4):585. doi: 10.3390/pr9040585
    [11] 崔玉洪. 基于超声波清洗技术的喷涂清洗装置集成设计及应用实践[J]. 制造技术与机床,2019(12):82-84.
    [12] Ando K,Sugawara M,Sakota R. Particle removal in ultrasonic water flow cleaning role of cavitation bubbles as cleaning agents[J]. Solid State Phenomena,2021,314:218-221. doi: 10.4028/www.scientific.net/SSP.314.218
    [13] Peng C,Zhang C Y ,Li Q F,et al. Erosion characteristics and failure mechanism of reservoir rocks under the synergistic effect of ultrasonic cavitation and micro-abrasives[J]. Advanced Powder Technology,2021,32(11):4391-4407.
    [14] Su K P ,Wu J H ,Xia D K. Classification of regimes determining ultrasonic cavitation erosion in solid particle suspensions[J]. Ultrasonics Sonochemistry,2020,68:105214.
    [15] LI S C. Cavitation enhancement of silt erosion—An envisaged micro model[J]. Wear,2005,260(9):1145-1150.
    [16] Su K P,Xia D K,Wu J H,et al. Particle size distribution effects on cavitation erosion in sediment suspensions[J]. Wear,2023:518-519.
    [17] Yuan B J,Jiang Y Z,Zhu L . Study on the processing methods of aluminum foil measurement signals for ultrasonic cleaning parameters[C]. Second International Conference on Digital Manufacturing & Automation,2011:1180-1183.
    [18] Fuchs F J. 19-Ultrasonic cleaning and washing of surfaces[J]. Power Ultrasonics,2015:577-609.
    [19] Chakraborty D,Chakraborty S. Microfluidic transport and micro-scale flow physics:An overview[J]. Microfluidics and Microfabrication,2010:1-85.
    [20] Mason T J. Ultrasonic cleaning:An historical perspective[J]. Ultrasonics - Sonochemistry,2016,29:519-523. doi: 10.1016/j.ultsonch.2015.05.004
    [21] Aktij S A ,Taghipour A,Rahimpour A,et al. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes[J]. Ultrasonics,2020,108:106228.
    [22] Fu Y Z,Zhu X J,Wang J Q,et al. Numerical study of the synergistic effect of cavitation and micro-abrasive particles[J]. Ultrasonics Sonochemistry,2022,89:106119. doi: 10.1016/j.ultsonch.2022.106119
    [23] Romero R,Teran L A,Coronado J J,et al. Synergy between cavitation and solid particle erosion in an ultrasonic tribometer[J]. Wear,2019:428-429.
    [24] Luo J,Xu W L,Zhai Y W,et al. Experimental study on the mesoscale causes of the influence of viscosity on material erosion in a cavitation field[J]. Ultrasonics Sonochemistry,2019,59(C):104699.
    [25] Sakr M,Mohamed M M,Maraqa M A,et al. A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment[J]. Alexandria Engineering Journal,2022,61(8):6591-6612. doi: 10.1016/j.aej.2021.11.041
    [26] Matin A ,Laoui T ,Falath W ,et al. Fouling control in reverse osmosis for water desalination & reuse:Current practices & emerging environment-friendly technologies[J]. The Science of the Total Environment,2021,765(15):142721.
    [27] Radziuk D,Möhwald H. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes[J]. Physical Chemistry Chemical Physics,2016,18:21-46.
    [28] Bakthavatchalam B,Habib K,Saidur R,et al. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement:A review on current and future perspective[J]. Journal of Molecular Liquids,2020,305:112787. doi: 10.1016/j.molliq.2020.112787
    [29] Sarasua J A,Rubio L R,Aranzabe E,et al. Energetic study of ultrasonic wettability enhancement[J]. Ultrasonics Sonochemistry,2021,79:105768. doi: 10.1016/j.ultsonch.2021.105768
    [30] Li M D,Bussonnière A,Xiang B L,et al. Effect of solid wettability on three-phase hydrodynamic cavitation[J]. Minerals Engineering,2022,180:107455. doi: 10.1016/j.mineng.2022.107455
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 录用日期:  2024-01-11
  • 修回日期:  2023-10-31

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部