留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同支链排布的3-PRS并联机构姿态能力比较

陈国旺 范秋垒 罗超

陈国旺, 范秋垒, 罗超. 不同支链排布的3-PRS并联机构姿态能力比较[J]. 制造技术与机床, 2022, (10): 54-60. doi: 10.19287/j.mtmt.1005-2402.2022.10.007
引用本文: 陈国旺, 范秋垒, 罗超. 不同支链排布的3-PRS并联机构姿态能力比较[J]. 制造技术与机床, 2022, (10): 54-60. doi: 10.19287/j.mtmt.1005-2402.2022.10.007
CHEN Guowang, FAN Qiulei, LUO Chao. Comparison of attitude capability of 3-PRS parallel mechanism with different chain arrangement[J]. Manufacturing Technology & Machine Tool, 2022, (10): 54-60. doi: 10.19287/j.mtmt.1005-2402.2022.10.007
Citation: CHEN Guowang, FAN Qiulei, LUO Chao. Comparison of attitude capability of 3-PRS parallel mechanism with different chain arrangement[J]. Manufacturing Technology & Machine Tool, 2022, (10): 54-60. doi: 10.19287/j.mtmt.1005-2402.2022.10.007

不同支链排布的3-PRS并联机构姿态能力比较

doi: 10.19287/j.mtmt.1005-2402.2022.10.007
详细信息
    作者简介:

    陈国旺,男,1993年生,在读博士研究生,主要从事机械动力学及并联机器人方面的研究。E-mail:839807136@qq.com

    通讯作者:

    罗超,男,1992年生,学士,助理工程师,主要从事机械创新设计及工业机器人设计方面的研究。E-mail:875873757@qq.com

  • 中图分类号: TH112

Comparison of attitude capability of 3-PRS parallel mechanism with different chain arrangement

  • 摘要: 以两种2R1T并联机构(文中称为机构A(Z3)、B)为研究对象,分析支链布局对机构姿态能力的影响。基于螺旋理论,运用运动/力传递指标求解两机构局部传递指标ITI、OTI及全局GTI。在此基础上,用数值方法,建立两机构定截面的优质传递姿态工作空间(good transmission orientational workspace, GTOW)模型。首先用经验尺寸绘制出两者边界姿态性能曲线,比较两者姿态能力,得出机构B姿态能力略好。然后,以许用传递指标[ηLTI]=0.7时的性能边界曲线的最大内切圆半径κGTOC最大化为优化目标,全局许用传递指标GTI和机构结构参数协调为约束条件,运用DE优化算法得到最优尺寸参数。以最优尺度参数绘制边界姿态性能曲线,优化后,机构A、B的姿态能力均有提高且机构B姿态能力比机构A姿态能力优良。由两机构优化姿态实力实例可得,变异Z3机构(机构B)姿态能力比Z3(机构A)优良,由此,也说明姿态能力会受支链排布的影响。

     

  • 图  1  3-PRS并联机构A(Z3)

    图  2  3-PRS并联机构B

    图  3  优化前机构LTI等高线(ZP=100 mm)

    图  4  求解机构尺度优化问题的DE算法框图

    图  5  优化后机构LTI等高线(ZP=100 mm)

    表  1  机构κGTOC比较

    尺寸参数机构A机构B
    经验尺寸优化尺寸经验尺寸优化尺寸
    r /mm50795078
    l /mm300592300595
    GTOC/(°)33.4840.8334.1141.14
    GTI0.8700.8820.8670.882
    下载: 导出CSV
  • [1] Zlatanov D, Bonev I A, Gosselin C M. Constraint singularities of parallel mechanisms[C]. 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), 2002, 1: 496-502.
    [2] Joachim W. Articulated tool head: US, US6431802 B1[P]. 2001.
    [3] Ni Y B, Zhang B, Sun Y, et al. Accuracy analysis and design of A3 parallel spindle head[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 239-249. doi: 10.3901/CJME.2015.1210.144
    [4] Siciliano B. The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm[J]. Robotica, 1999, 17(4): 437-445. doi: 10.1017/S0263574799001678
    [5] 杨应洪, 尹显明. 一种2RPS-RPU并联机构的动力学分析[J]. 机械设计与制造, 2019(9): 58-62,66. doi: 10.3969/j.issn.1001-3997.2019.09.015
    [6] 吕叶萍, 许勇, 刘勇, 等. 一种含闭环结构单元的新型2R1T并联机构运动性能优化[J]. 机械设计与研究, 2019, 35(2): 50-54,59.
    [7] Wang J S, Wu C, Liu X J. Performance evaluation of parallel manipulators: Motion / force transmissibility and its index[J]. Mechanism and Machine Theory, 2010, 45(10): 1462-1476. doi: 10.1016/j.mechmachtheory.2010.05.001
    [8] 车林仙, 陈国旺, 杜力, 等. 传递空间最大化的球面5R并联机构尺度优化[J]. 机械传动, 2020, 44(6): 37-43.
    [9] Wang F B, Chen Q H, Li Q C. Optimal design of a 2-upr-rpu parallel manipulator[J]. Journal of Mechanical Design, 2015, 137(5):054501.
    [10] Assal S. A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation[J]. Robotica, 2017, 35(5): 1031-1053. doi: 10.1017/S0263574715000958
    [11] Pond G, Carretero J A. Architecture optimisation of three 3-PRS variants for parallel kinematic machining[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1): 64-72. doi: 10.1016/j.rcim.2007.09.002
    [12] Sun T, Song Y M, Li Y G, et al. Dimensional synthesis of a 3-DOF parallel manipulator based on dimensionally homogeneous Jacobian matrix[J]. SCI China Ser E, 2010, 53(1): 168-174. doi: 10.1007/s11431-009-0375-y
    [13] Gao Z, Zhang D, Ge Y. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(2): 180-189. doi: 10.1016/j.rcim.2009.07.002
    [14] Liu X J, Jin Z L, Gao F. Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices[J]. Mechanism and Machine Theory, 2000, 35(9): 1257-1267. doi: 10.1016/S0094-114X(99)00072-5
    [15] Belkacem B. Multi-objective optimal design based kineto-elastostatic performance for the delta parallel mechanism[J]. Robotica, 2016, 34(2): 258-273. doi: 10.1017/S0263574714001416
    [16] He K, Yang Z J, Yun B, et al. Intelligent fault diagnosis of delta 3d printers using attitude sensors based on support vector machines[J]. Sensors, 2018, 18(4): 1298. doi: 10.3390/s18041298
    [17] Huang G Y, Guo S, Zhang D, et al. Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness[J]. Robotica, 2018, 36(2): 187-203. doi: 10.1017/S0263574717000236
    [18] 侯雨雷, 汪毅, 范建凯, 等. 3-PCSS/S球面并联肩关节机构优化与仿生设计[J]. 机械工程学报, 2015, 51(11): 16-23.
    [19] Wang L P, Xu H Y, Li W G. Optimal design of a 3-PUU parallel mechanism with 2R1T DOFs[J]. Mechanism and Machine Theory, 2017, 114: 190-203. doi: 10.1016/j.mechmachtheory.2017.03.008
    [20] Chen X, Liu X J, Xie F G, et al. A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: The sprint Z3 and A3 tool heads[J]. International Journal of Advanced Robotic Systems, 2014, 11(1): 1-10. doi: 10.5772/56810
    [21] Li Q C, Chen Z, Chen Q H, et al. Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements[J]. Robotics and Computer Integrated Manufacturing, 2011, 27(2): 389-396. doi: 10.1016/j.rcim.2010.08.007
    [22] 王大志, 何凯, 杜如虚. 基于约束图谱旋量分析方法的调平机构约束设计[J]. 机械工程学报, 2011, 47(19): 49-58.
    [23] Dai J S, Jones J R. Null-space construction using cofactors from a screw-algebra context[J]. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, 2002, 458(2024): 1845-1866. doi: 10.1098/rspa.2001.0949
    [24] Wu C, Liu X J, Wang L P, et al. Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility[J]. Journal of Mechanical Design, 2010, 132(3): 031002. doi: 10.1115/1.4001129
    [25] Xie F G, Liu X J, Wang J S. A 3-DOF parallel manufacturing module and its kinematic optimization[J]. Robotics and Computer- Integrated Manufacturing, 2012, 28(3): 334-343. doi: 10.1016/j.rcim.2011.10.003
    [26] 文世坤, 车林仙, 杜力, 等. 三移动一转动4-PRPaU并联机构运动学分析[J]. 机械传动, 2020, 44(11): 121-126,151.
    [27] Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/4): 311-338.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  4
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-07-12

目录

    /

    返回文章
    返回

    重要提示

    1. 唯一官方网站:1951.mtmt.com.cn

    2. 本刊编辑部、工作人员邮箱后缀为@jcs.gt.cn

    3. 电话

    010-64739683/79(稿件、进度)

    010-64739685(缴费、录用证明)

    4. 作者服务QQ群:238874846

    注意以上信息,谨防冒名、被骗!

    《制造技术与机床》编辑部