Issue 1
Jan.  2022
Turn off MathJax
Article Contents
NAN Xiaoxuan, WANG Jun, XIAO Ming, XI Wenming. Modeling and experimental research on mirror model of robotic processing equipment[J]. Manufacturing Technology & Machine Tool, 2022, (1): 14-18. doi: 10.19287/j.cnki.1005-2402.2022.01.002
Citation: NAN Xiaoxuan, WANG Jun, XIAO Ming, XI Wenming. Modeling and experimental research on mirror model of robotic processing equipment[J]. Manufacturing Technology & Machine Tool, 2022, (1): 14-18. doi: 10.19287/j.cnki.1005-2402.2022.01.002

Modeling and experimental research on mirror model of robotic processing equipment

doi: 10.19287/j.cnki.1005-2402.2022.01.002
  • Received Date: 2021-09-13
    Available Online: 2022-03-07
  • Establishing a mirror model of processing equipment in the digital space is the basis for intelligent manufacturing. The mirror model and processing equipment constitute a digital twin, so as to realize the processing simulation, simulation and parameter optimization of the processing equipment in the digital space. The axis rotation method is used to obtain the axis and position of each axis of the physical robot, and the decoupling calibration of the geometric parameters and the zero position of the physical robot is realized. The coordinate transformation method is used to establish the kinematics equation of the physical robot and the Newton iteration method is used to obtain the inverse kinematics solution. In the digital space, the calibrated geometric parameters are used to establish a mirror model of the physical robot, and the tool path generation and post-processing modules are integrated. The experimental results show that the maximum processing error of the physical robot′s constant attitude is 0.28 mm, and the machining error range of the robot′s variable attitude is -0.83~+0.52 mm.

     

  • loading
  • [1]
    Zhang C, Zhou G H, He J, et al. A data-and knowledge-driven framework for digital twin manufacturing cell[J]. Procedia CIRP, 2019, 83: 345-350. doi: 10.1016/j.procir.2019.04.084
    [2]
    Niki K, Christos G, Sotiris A, et al. Digital twin for adaptation of robots' behavior in flexible robotic assembly lines[J]. Procedia Manufacturing, 2019, 28: 121-126. doi: 10.1016/j.promfg.2018.12.020
    [3]
    Zhao Z Y, Wang S B, Wang Z H, et al. Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining[J]. Journal of Intelligent Manufacturing, 2020: 1-10. doi: 10.1007/s10845-020-01698-4
    [4]
    Guo H F, Zhu Y X, Zhang Y, et al. A digital twin-based layout optimization method for discrete manufacturing workshop[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5-6): 1-12. https://www.researchgate.net/publication/348160784_A_digital_twin-based_layout_optimization_method_for_discrete_manufacturing_workshop
    [5]
    Aivaliotis P, Georgoulias K, Chryssolouris G. The use of digital twin for predictive maintenance in manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(11): 1067-1080. doi: 10.1080/0951192X.2019.1686173
    [6]
    徐开怀. CAD/CAM/Robot集成的加工方法研究及其应用[D]. 厦门: 厦门大学, 2018.
    [7]
    Gergely H, Gábor E. Point cloud based robot cell calibration[J]. CIRP Annals, 2017, 66(1): 145-148. doi: 10.1016/j.cirp.2017.04.044
    [8]
    Xu X H, Zhu D H, Wang J H, et al. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere[J]. Robotics and Computer Integrated Manufacturing, 2018, 51: 189-201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return