Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Min, WU Zhiqun, CHEN Dongsheng. Modeling and study on characteristic of high accuracy FTS system[J]. Manufacturing Technology & Machine Tool, 2022, (1): 84-88. doi: 10.19287/j.cnki.1005-2402.2022.01.015
Citation: ZHANG Min, WU Zhiqun, CHEN Dongsheng. Modeling and study on characteristic of high accuracy FTS system[J]. Manufacturing Technology & Machine Tool, 2022, (1): 84-88. doi: 10.19287/j.cnki.1005-2402.2022.01.015

Modeling and study on characteristic of high accuracy FTS system

doi: 10.19287/j.cnki.1005-2402.2022.01.015
Funds:

 51905507

 2020YFH0006

  • Received Date: 2021-06-28
    Available Online: 2022-03-07
  • Fast tool servo (FTS) is one of mechanical methods used in optical components with complex surfaces. In this paper, a FTS system which is drived by piezoelectric ceramic(PZT) and transferred by flexuer hinges is developed. The testing results show that the positioning errors are less than 4 nm, the repetitive positioning error is less than 4 nm, the max travel is 50 nm and the frequency response precedes 150 Hz at 20 μm; A good foundation for future use was built in optical components with complex surfaces.

     

  • loading
  • [1]
    Sandoz P, Trolard B, Marsaut D, et al. Micro-structured surface-element for high-accuracy position measurement by vision and phase-measurement[C]. Proceeding of the Society of Photo-Optical Instru-ment Engineers, Strasbourg, France, 2004: 606-611.
    [2]
    康儒. 基于压电伺服刀具的非球面摆动切削加工工艺研究[C]. 沈阳: 沈阳工业大学, 2018.
    [3]
    徐兵, 张旭, 王俊, 等. 大行程快速刀具伺服装置的设计[J]. 机械设计与制造, 2014(8): 69-74.
    [4]
    Weck M, Fischer S. Manufacturing of microstructures using ultraprecision machine tools[C]. Part of the Symposium on Design, Test, and Microfabri-cation of MEMS and MOEMS. Paris, France, 1999: 450-455.
    [5]
    Hon K K B, Li L, Hutchings I M. Direct writing technology-advances and developments[J]. Cirp Annals-manufacturing Technology, 2008, 57(2): 601-620. doi: 10.1016/j.cirp.2008.09.006
    [6]
    焦长君, 李圣怡, 解旭辉, 等. 光学精密离子束加工系统设计和分析[J]. 中国机械工程, 2008, 19(10): 1213-1218. doi: 10.3321/j.issn:1004-132X.2008.10.020
    [7]
    Xu Z W, Fang F Z, Gao H F, et al. Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1): 511-514. doi: 10.1016/j.cirp.2012.03.118
    [8]
    Shin J H, Go B N, Choi J H, et al. Fabrication of silica nanostructures wi-th a microwave assisteddirect patterning process[J]. Nanotechnology, 2014, 25(2): 205-301.
    [9]
    Xu S, Shimada K, Mizutani M, et al. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool[J]. International Journal of Machine Tools and Manufacture, 2014, 86: 12-17. doi: 10.1016/j.ijmachtools.2014.06.005
    [10]
    Kuo H F. Effect of Source pupil shape on process windows in EUV lithography[J]. IEEE Transactions on Nanotechnology, 2014, 13 (1): 136-142. doi: 10.1109/TNANO.2013.2294544
    [11]
    Taylor A B, Michaux P, Mohsin A S M. Electron-beam lithography of plas-monic nanorod arrays for multilayered optical storage[J]. Optics Express, 2014, 22(11): 13234-13243. doi: 10.1364/OE.22.013234
    [12]
    周林, 戴一帆, 解旭辉, 等. 光学精密离子束加工的可达性[J]. 光学精密工程, 2007, 15(2): 160-166. doi: 10.3321/j.issn:1004-924X.2007.02.003
    [13]
    Egashira K, Kumagai R, Okina R, et al. Drilling of microholes down to 10 μm in diameter using ultrasonic grinding[J]. Precision Engineering, 2014, 38(3): 605-610. doi: 10.1016/j.precisioneng.2014.02.010
    [14]
    Tsai S W, Chen P Y, Lee Y C. Fabrication of seamless roller mold with wavy microstructures using mask-less curved surface beam pen lithography[J]. Journal of Micromechanics and Microengineering, 2014, 24(4): 045022. doi: 10.1088/0960-1317/24/4/045022
    [15]
    Nadeem H R, Philp T R, Malecolm C G. Newdevelopments and applications in the production of 3D micro-structures by laser micro-machining[C]. SPIE, 1999, 3670: 389-496.
    [16]
    詹东海. 快刀伺服装置中主轴位置与压电陶瓷同步控制研究[D]. 广州: 广东工业大学, 2015.
    [17]
    周欢伟. 新型快刀伺服器结构动态设计与误差补偿技术[D]. 广州: 广东工业大学, 2015.
    [18]
    戴一帆, 杨海宽, 王贵林, 等. 压电陶瓷驱动的超精密快刀伺服系统的设计与研制[J]. 中国机械工程, 2009, 20(22): 2717-2721. doi: 10.3321/j.issn:1004-132X.2009.22.015
    [19]
    孙豪, 起建立, 林泽钦, 等. 球面上微透镜阵列超精密慢伺服加工精度影响因素的研究[J]. 光学精密工程, 2018, 26(10): 2516-2526.
    [20]
    房丰洲, 陈晓菲, 张效栋, 等. 基于自抗扰控制算法的麦克斯韦快刀伺服控制系统[J]. 纳米技术与精密工程, 2017, 15(5): 335-341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (81) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return