Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Xi, HUANG Shutao, XU Lifu, ZHANG Yupu, YU Xiaolin. Experimental study of high-strength steel for high-speed milling AF1410[J]. Manufacturing Technology & Machine Tool, 2022, (1): 124-129. doi: 10.19287/j.cnki.1005-2402.2022.01.023
Citation: WANG Xi, HUANG Shutao, XU Lifu, ZHANG Yupu, YU Xiaolin. Experimental study of high-strength steel for high-speed milling AF1410[J]. Manufacturing Technology & Machine Tool, 2022, (1): 124-129. doi: 10.19287/j.cnki.1005-2402.2022.01.023

Experimental study of high-strength steel for high-speed milling AF1410

doi: 10.19287/j.cnki.1005-2402.2022.01.023
Funds:

 JCKY201941OD002

  • Received Date: 2021-05-17
    Available Online: 2022-03-07
  • High-strength steel has excellent mechanical properties and wide application, but cutting is difficult, there are low processing efficiency, poor quality processing surface and other problems. In this paper, AF1410 high-strength steel as the research object, the application of high-speed milling machining methods, the use of coated carbide blades, the AF1410 high-strength steel high-speed milling experiments, research and analysis of tool wear, cutting force, cutting temperature and processed surface roughness changes in the conditions. The study found that CVD-coated tools combined with TiCN and Al2O3 can be adapted to long-term high-speed stable cutting of AF1410 high-strength steels, and that tool wear patterns are mainly normal wear on the flank surface; Radial force Fr is the largest, axial force Fz is second, and tangential force Ft is minimal during cutting, and as the cutting length increases, the radial force Fr and axial force Fz increase significantly and the tangential force Ft changes less; The chip temperature just cut out by the tool increases gradually, and the workpiece machined surface temperature increases less, and the roughness of the machined surface fluctuates less with the increase in cutting length.

     

  • loading
  • [1]
    田欢乐, 胡洪, 陈海, 等. 超高强度钢在汽车底盘零部件中的设计应用[J]. 汽车实用技术, 2020(7): 58-61, 86.
    [2]
    张慧萍, 刘壬航, 李珍灿, 等. 300M超高强度钢高速切削过程仿真研究[J]. 机械科学与技术, 2017, 36(10): 1550-1555.
    [3]
    罗智文, 焦黎, 赵文祥, 等. 58SiMn高强度钢车削表面完整性的试验研究[J]. 表面技术, 2017, 46(1): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201701038.htm
    [4]
    Khawaja H, Jahanzaib M, Cheema A. High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication[J]. Advances in Production Engineering & Management, 2020, 15(4): 403-415.
    [5]
    Le G, Wei Z, Fei R, et al. Experimental study on surface integrity in cryogenic milling of 35CrMnSiA high-strength steel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 605-615. doi: 10.1007/s00170-019-03577-6
    [6]
    Jiang H W, He L, Ren Z W, et al. Prediction of residual stress in the process of turning high strength alloy steel by innovative coated carbide microgroove tools[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 4693-4705. doi: 10.1007/s00170-020-04962-2
    [7]
    Ajaja J, Jomaa W, Bocher P, et al. Hard turning multi-performance optimization for improving the surface integrity of 300M ultra-high strength steel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 141-157. doi: 10.1007/s00170-019-03863-3
    [8]
    Ajaja J, Jomaa W, Bocher P, et al. High cycle fatigue behavior of hard turned 300 M ultra-high strength steel[J]. International Journal of Fatigue, 2020, 131(Feba): 105380.1-105380.12.
    [9]
    Yang Z C, Xue Y, Li Y, et al. The effect of milling parameters on surface integrity in high-speed milling of ultrahigh strength steel[J]. Procedia CIRP, 2018, 71: 83-88. doi: 10.1016/j.procir.2018.05.076
    [10]
    张慧萍, 刘壬航, 李珍灿. 300M超高强度钢高速切削过程仿真研究[J]. 机械科学与技术, 2017, 36(10): 1550-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201710011.htm
    [11]
    Akbar F, Arsalan M. Thermal modelling of cutting tool temperatures and heat partition in orthogonal machining of high-strength alloy steel[J]. Proceedings of the Institution pf Mechanical Engineers Part BJournal of Engineering Manufacture, 2021, 235(8): 095440542098608.
    [12]
    房友飞. 300M超高强度钢高速自组织车削刀具减摩机理的研究[D]. 淄博: 山东理工大学, 2017.
    [13]
    程红玫, 高有山. 超高强度钢切削仿真和刀具磨损率建模研究[J]. 组合机床与自动化加工技术, 2017(6): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201706037.htm
    [14]
    Guo C S, Zhang C M, Bai H Q, et al. Influence of milling parameters on milling performance of 300M ultra high strength steel[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493(1): 012065.
    [15]
    罗智文, 焦黎, 赵文祥, 等. 58SiMn高强度钢车削表面完整性的试验研究[J]. 表面技术, 2017, 46(1): 234-240.
    [16]
    Jin X, Yan F, Yan L, et al. Multiobjective optimization of milling parameters for ultrahigh-strength steel AF1410 based on the NSGA-Ⅱ method[J]. Advances in Materials Science and Engineering, 2020(3): 1-11.
    [17]
    李鹏军, 黄树涛, 张玉璞, 等. 高速切削AF1410的切削温度有限元仿真分析[J]. 兵器材料科学与工程, 2021, 44(2): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202102020.htm
    [18]
    张校雷. 40CrNi2Si2MoVA超高强度钢高速铣削机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2016: 2-3.
    [19]
    李强, 郭辰光, 赵丽娟, 等. DD5镍基单晶高温合金高速铣削判据及切屑毛边成形机理研究[J]. 中国机械工程, 2020, 31(19): 2388-2393. doi: 10.3969/j.issn.1004-132X.2020.19.016
    [20]
    赵先锋, 姜雪婷, 史红艳, 等. 切削速度对钛合金切屑形貌和剪切带的影响研究[J]. 机械设计与制造, 2020(10): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202010041.htm
    [21]
    何宁. 高速切削技术[M]. 上海: 上海科学技术出版社, 2012: 38-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (55) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return