Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Zihan, YANG Xiuzhi, DUAN Xianyin, JIANG Yuhui, WANG Xingdong. Research on thermal error modeling of machine tool based on bayesian neural network[J]. Manufacturing Technology & Machine Tool, 2022, (1): 141-145. doi: 10.19287/j.cnki.1005-2402.2022.01.026
Citation: WANG Zihan, YANG Xiuzhi, DUAN Xianyin, JIANG Yuhui, WANG Xingdong. Research on thermal error modeling of machine tool based on bayesian neural network[J]. Manufacturing Technology & Machine Tool, 2022, (1): 141-145. doi: 10.19287/j.cnki.1005-2402.2022.01.026

Research on thermal error modeling of machine tool based on bayesian neural network

doi: 10.19287/j.cnki.1005-2402.2022.01.026
Funds:

 51875418

 GF201906

 2017YFB1300502

  • Received Date: 2021-05-17
    Available Online: 2022-03-07
  • Thermal error seriously affects the machining accuracy of the machine tool. The thermal characteristic analysis of the key parts of the machine tool is an important link in the development of precision machine tool. Therefore, this paper studies the relationship between temperature rise and positioning error by measuring the thermal characteristics including the temperature and positioning error of special position of CNC machine tool, and proposes a thermal error modeling method based on Bayesian neural network. Using K-means clustering and correlation coefficient method to select temperature sensitive points can effectively suppress multicollinearity between temperature measurement points. The results show that the accuracy of machine tool can be improved by 88.015 9% by using bayesian neural network, which is 15.763 8% higher than BP neural network. Compared with BP neural network model, bayesian neural network has better prediction performance. Bayesian neural network model provides a new idea to reduce the influence of thermal error of machine tool.

     

  • loading
  • [1]
    Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools-a review[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 12-19.
    [2]
    Josef M, Jerzy J, Eckart U, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2): 43-58.
    [3]
    余文利, 姚鑫骅. 改进混沌粒子群优化的灰色系统模型在机床热误差建模中的应用[J]. 现代制造工程, 2018, 21(6): 101-107, 22.
    [4]
    张毅, 杨建国. 基于灰色理论预处理的神经网络机床热误差建模[J]. 机械工程学报, 2011, 47(7): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201107021.htm
    [5]
    张毅, 杨建国. 基于灰色神经网络的机床热误差建模[J]. 上海交通大学学报, 2011, 45(11): 1581-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201111003.htm
    [6]
    郑金勇, 刘保国, 冯伟. 基于遗传算法优化灰色神经网络的机床主轴热误差建模研究[J]. 机电工程, 2019, 36(6): 602-607. doi: 10.3969/j.issn.1001-4551.2019.06.009
    [7]
    谭峰, 殷国富, 殷勤, 等. 基于GM-LS-SVM层级模型的数控机床热误差建模[J]. 中南大学学报: 自然科学版, 2016, 47(12): 4028-4034. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201612010.htm
    [8]
    李彬, 张云, 王立平, 等. 基于遗传算法优化小波神经网络数控机床热误差建模[J]. 机械工程学报, 2019, 55(21): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201921023.htm
    [9]
    Shi H, Jiang C, Yan Z, et al. Bayesian neural network-based thermal error modeling of feed drive system of CNC machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9): 3031-3044.
    [10]
    Blundell C, Cornebise J, Kavukcuoglu K, et al. Weight uncertainty in neural network[C]//International Conference on Machine Learning. PMLR, 2015, 23(7): 1613-1622.
    [11]
    Kingma D P, Salimans T, Welling M. Variational dropout and the local reparameterization trick[J]. IEICE Transactions on Fundamantals of Electronics, Communications and Computer Sciences, 2015, 34(2): 2575-2583.
    [12]
    Kingma D P, Welling M. Auto-encoding variational bayes[J]. arxiv: Machine Learning, 2013.
    [13]
    Mater M, Zwicker R, Akbari M, et al, Wegener K Bayesian optimization for autonomous process set-up in turning[J]. CIRP Journal of Manufacturing Science and Technology, 2019, 26: 81-87.
    [14]
    Ticknor J L. A Bayesian regularized artificial neural networkfor stock market forecasting[J]. Expert Systems with Application, 2013, 40(14): 5501-5506.
    [15]
    余文利, 姚鑫骅, 傅建中, 等. 贝叶斯证据框架下的LS-SVM多工况数控机床热误差建模[J]. 中国机械工程, 2014, 25(17): 2361-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201417017.htm
    [16]
    吴雄彪, 姚鑫骅, 傅建中. 基于贝叶斯网络的数控机床热误差建模[J]. 中国机械工程, 2009, 20(3): 293-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200903010.htm
    [17]
    徐洋. 基于动态贝叶斯网络的精密机床热误差研究与应用[D]. 上海: 上海工程技术大学, 2016.
    [18]
    王承辉. 基于深度学习的大型龙门五面加工中心热误差建模方法与补偿[D]. 重庆: 重庆理工大学, 2019.
    [19]
    杜柳青, 李仁杰. 基于优化模糊神经网络的高速数控机床热误差建模方法[J]. 组合机床与自动化加工技术, 2020(8): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC202008003.htm
    [20]
    马雨萌. 立式加工中心热误差的测量与分析研究[D]. 济南: 济南大学, 2019.
    [21]
    陈维范, 薛丹. 数控车床热误差建模与补偿研究[J]. 机床与液压, 2020, 48(14): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY202014039.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (160) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return