Issue 6
May  2022
Turn off MathJax
Article Contents
FU Zhenfeng, WANG Zhenzhong, WANG Biao, SHEN Bingyi, HUANG Xuepeng. Hydrodynamic effect polishing characteristics of ultra-smooth surfaces of optical components[J]. Manufacturing Technology & Machine Tool, 2022, (6): 11-17. doi: 10.19287/j.mtmt.1005-2402.2022.06.002
Citation: FU Zhenfeng, WANG Zhenzhong, WANG Biao, SHEN Bingyi, HUANG Xuepeng. Hydrodynamic effect polishing characteristics of ultra-smooth surfaces of optical components[J]. Manufacturing Technology & Machine Tool, 2022, (6): 11-17. doi: 10.19287/j.mtmt.1005-2402.2022.06.002

Hydrodynamic effect polishing characteristics of ultra-smooth surfaces of optical components

doi: 10.19287/j.mtmt.1005-2402.2022.06.002
  • Received Date: 2021-10-18
  • Hydrodynamic effect polishing can achieve non-contact micro removal based on fluid shear effect, and can obtain ultra-smooth surface with roughness below 1 nm, which has good application prospects in the field of advanced optical and microelectronic material processing. In this paper, the fluid-driven polishing ball is designed based on the sphere elastic emission processing method, and the fluid velocity as well as the pressure and shear force distribution on the surface of the workpiece are analyzed by the simulation of the flow field in the polishing area with Fluent software.Three parameters, such as polishing gap, tool ball diameter and spindle speed, were used to investigate the laws of their effects on the maximum pressure and shear force applied to the workpiece surface. A single-factor polishing test was designed for parameter optimization, and a small-diameter (20 mm × 20 mm) polishing test was carried out, and the results of workpiece surface roughness RMS decreased from 16.939 nm to 2.467 nm, and the preliminary experiments showed the feasibility of this processing method in the application of optical components.

     

  • loading
  • [1]
    Mori Y, Yamauchi K, Endo K. Elastic emission machining[J]. Journal of the Japan Society for Precision Engineering, 1989, 55(3): 480-484. doi: 10.2493/jjspe.55.480
    [2]
    Kanaoka M, Liu C, Nomura K, et al. Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics[J]. Journal of Vacuum Science & Technology B, 2007, 25(6): 2110-2113.
    [3]
    李庆宇. 基于流体动力润滑效应的双转弹性发射加工技术研究[D]. 长沙: 国防科学技术大学, 2015.
    [4]
    彭文强, 关朝亮, 胡旭东, 等. 流体动压超光滑加工关键工艺参数优化[J]. 国防科技大学学报, 2017, 39(4): 179-184. doi: 10.11887/j.cn.201704028
    [5]
    李岩. 基于中心供液流体动压原理的盘式抛光理论与实验研究[D]. 天津: 天津大学, 2017.
    [6]
    郑子军, 薛凯元, 文东辉, 等. 线性液动压抛光加工的流体动压特性研究[J]. 中国机械工程, 2020, 31(8): 907-914. doi: 10.3969/j.issn.1004-132X.2020.08.004
    [7]
    张富. 弹性约束游离磨料超光滑表面加工技术的研究[D]. 长春: 吉林大学, 2007.
    [8]
    计时鸣, 何剑敏, 洪滔, 等. 导流式液流悬浮加工流场特性研究[J]. 中国机械工程, 2012, 23(12): 1417-1422. doi: 10.3969/j.issn.1004-132X.2012.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (35) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return