Issue 6
May  2022
Turn off MathJax
Article Contents
ZHANG Chuanyou, WANG Guan, LIU Zanfeng, ZHANG Yawen. Experimental study on pulse laser cutting 46MnVS5 connecting rod cracking groove[J]. Manufacturing Technology & Machine Tool, 2022, (6): 69-73. doi: 10.19287/j.mtmt.1005-2402.2022.06.011
Citation: ZHANG Chuanyou, WANG Guan, LIU Zanfeng, ZHANG Yawen. Experimental study on pulse laser cutting 46MnVS5 connecting rod cracking groove[J]. Manufacturing Technology & Machine Tool, 2022, (6): 69-73. doi: 10.19287/j.mtmt.1005-2402.2022.06.011

Experimental study on pulse laser cutting 46MnVS5 connecting rod cracking groove

doi: 10.19287/j.mtmt.1005-2402.2022.06.011
  • Received Date: 2022-03-01
  • Accepted Date: 2022-04-12
  • In this paper, the influence of different pulse fiber laser processing parameters (pulse power, pulse frequency, pulse width and cutting speed) on the geometry of 46MnVS5 cracking groove of a new expanded connecting rod material is analyzed and summarized. The results show that with the increase of pulse power, pulse frequency and pulse width, the depth and width of cracking tank increase in varying degrees. Among them, the pulse power has a great influence on the opening angle, but the change of pulse frequency and pulse width on the opening angle is not obvious; The groove depth and width decrease with the increase of cutting speed, and the opening angle changes in a certain size range. When the processed groove depth is between 450~700 μm and the groove width is between 150~200 μm, the opening angle changes in the range of 15°~20°, which can meet the processing requirements.

     

  • loading
  • [1]
    Gu Z, Yang S, Ku S. Fracture splitting technology of automobile engine connecting rod[J]. International Journal of Advanced Manufacturing Technology, 2005, 25(9-10): 883-887. doi: 10.1007/s00170-003-2022-2
    [2]
    姜银方, 龙昆, 何艺. 连杆裂解加工技术的现状与展望[J]. 制造技术与机床, 2012(7): 55-59. doi: 10.3969/j.issn.1005-2402.2012.07.020
    [3]
    Kou S Q, Gao Y, Zhao Y, et al. Stress analysis and optimization of Nd: YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2467-2476. doi: 10.1007/s12206-017-0138-9
    [4]
    徐云, 于永仁. 发动机连杆裂解工艺分析[J]. 汽车工艺与材料, 2011(8): 18-20. doi: 10.3969/j.issn.1003-8817.2011.08.005
    [5]
    沙德利. 连杆材料的高频振动裂解机制与断口分析[D]. 镇江: 江苏大学, 2019.
    [6]
    孙国玉, 杨君婷, 包明冉, 等. 高功率光纤激光的发展现状与应用[J]. 现代物理, 2020, 10(6): 103-112.
    [7]
    陈圳. 脉冲光纤激光器研制及关键技术研究[D]. 武汉: 武汉邮电科学研究院, 2018.
    [8]
    李志鹏. 发动机连杆初始裂解槽光纤激光加工工艺研究[D]. 广州: 广东工业大学, 2018.
    [9]
    苏艳芳, 郭佳杰, 王颖达, 等. 脉冲激光加热参数对钎焊金刚石温度场影响的仿真分析[J]. 超硬材料工程, 2017, 29(2): 22-27. doi: 10.3969/j.issn.1673-1433.2017.02.006
    [10]
    杨淑霞, 贾全仓, 李炳锋. 发动机连杆接合面裂解加工影响因素分析[J]. 现代制造技术与装备, 2012(2): 26-27. doi: 10.3969/j.issn.1673-5587.2012.02.015
    [11]
    阎洪涛. 发动机连杆裂解工艺参数确定及数值模拟[D]. 燕山: 燕山大学, 2006.
    [12]
    张冲. 脉冲光纤激光加工36MnVS4胀断连杆裂解槽关键技术及装备的研究[D]. 广州: 广东工业大学, 2018.
    [13]
    郑祺峰, 杨慎华, 邓春萍, 等. 应用Nd: YAG激光加工连杆初始裂解槽[J]. 光学精密工程, 2010, 18(1): 142-148.
    [14]
    于凤雨. 连续激光切割C70S6裂解槽数值模拟[D]. 长春: 吉林大学, 2013.
    [15]
    杨宏宇. 连杆断裂剖分过程数值模拟及主要裂解缺陷分析[D]. 长春: 吉林大学, 2014.
    [16]
    朱梦成. 超声辅助连杆裂解及其微观机制研究[D]. 镇江: 江苏大学, 2020.
    [17]
    郑黎明. 发动机连杆裂解加工关键技术研究与装备开发[D]. 长春: 吉林大学, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (41) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return