Issue 6
May  2022
Turn off MathJax
Article Contents
PENG Jingqi, LAN Yipeng. Research on RBF-PID self-learning control of magnetic levitation linear synchronous motor drive system of motion platform[J]. Manufacturing Technology & Machine Tool, 2022, (6): 113-118. doi: 10.19287/j.mtmt.1005-2402.2022.06.018
Citation: PENG Jingqi, LAN Yipeng. Research on RBF-PID self-learning control of magnetic levitation linear synchronous motor drive system of motion platform[J]. Manufacturing Technology & Machine Tool, 2022, (6): 113-118. doi: 10.19287/j.mtmt.1005-2402.2022.06.018

Research on RBF-PID self-learning control of magnetic levitation linear synchronous motor drive system of motion platform

doi: 10.19287/j.mtmt.1005-2402.2022.06.018
  • Received Date: 2021-11-05
  • Accepted Date: 2022-04-12
  • Aiming at the non-linearity, coupling and uncertainty of external disturbance in the magnetic levitation linear synchronous motor drive system of the moving platform, a RBF neural network PID self-learning controller is proposed. Firstly, the structure and operating mechanism of the magnetic levitation linear synchronous motor are introduced in detail; the mathematical model of the magnetic levitation linear synchronous motor is established, and the expressions of the voltage equation, flux linkage equation, horizontal thrust equation and horizontal motion equation are derived; a design based on The PID self-learning controller of RBF neural network. In the RBF neural network, the gradient method is generally used to adjust the parameters wbc. In order to effectively shorten the learning time of the network and reduce the oscillation of the system, the paper is in the RBF neural network. The momentum factor item is introduced in, and the control system is simulated through MATLAB to verify that the RBF-PID self-learning algorithm has better stability and anti-disturbance than the PI controller.

     

  • loading
  • [1]
    封光磊, 崔岗卫, 胡传勇, 等. 数控机床高速刚性攻丝优化技术研究[J]. 制造技术与机床, 2017(7): 109-113.
    [2]
    焦丕显, 李林, 肖光临, 等. 浅谈高速切削加工技术在数控机床中的运用[J]. 中国设备工程, 2021(8): 192-194. doi: 10.3969/j.issn.1671-0711.2021.08.117
    [3]
    郭亮, 邓乾坤, 鲁文其, 等. 高精度数控机床直线电机的改进型自抗扰控制研究[J]. 机电工程, 2019, 36(12): 1303-1308. doi: 10.3969/j.issn.1001-4551.2019.12.014
    [4]
    原浩, 赵希梅. 永磁直线同步电动机伺服系统的自适应加加速度[J]. 电工技术学报, 2020, 35(16): 3406-3413.
    [5]
    朱逢锐. 基于RBF神经网络的PID自校正控制研究及应用[D]. 淮南: 安徽理工大学, 2017.
    [6]
    刘金辉. RBF神经网络自适应Matlab仿真[M]. 北京: 清华大学出版社, 2014
    [7]
    赵崇文. 人工神经网络综述[J]. 山西电子技术, 2020(3): 94-96. doi: 10.3969/j.issn.1674-4578.2020.03.033
    [8]
    杜川. 基于电流预测控制的永磁同步电机矢量控制策略[J]. 沈阳工业大学学报, 2019, 41(6): 616-620. doi: 10.7688/j.issn.1000-1646.2019.06.04
    [9]
    Chen S Y, Member S, IEEE S. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[J]. Control Systems Technology, 2011, 19(3): 636-643. doi: 10.1109/TCST.2010.2050484
    [10]
    Shao K, Zheng J, Huang K, et al. Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6659-6668. doi: 10.1109/TIE.2019.2937062
    [11]
    蓝益鹏, 胡学成, 陈其林, 等. 可控励磁磁悬浮进给平台电磁特性的有限元分析[J]. 机械工程学报, 2017, 53(4): 184-189.
    [12]
    卢琴芬, 沈燚明, 叶云岳. 永磁直线电动机结构及研究发展综述[J]. 中国电机工程学报, 2019, 39(9): 2575-2588.
    [13]
    郭跃东, 宋旭东. 梯度下降法的分析和改进[J]. 科技展望, 2016, 26(15): 115-117.
    [14]
    高子龙, 刁吉阳, 隋大鹏, 等. 某随动控制系统RBF神经网络PID复合控制[J]. 自动化与仪器仪表, 2020(11): 56-60.
    [15]
    李志伟. 提高BP神经网络学习速率的算法研究[J]. 考试周刊, 2016(21): 103. doi: 10.3969/j.issn.1673-8918.2016.21.090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (34) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return