Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LIU Dong. Current situation and development of key equipment and technology of new generation launch vehicle body system[J]. Manufacturing Technology & Machine Tool, 2023, (3): 85-93. doi: 10.19287/j.mtmt.1005-2402.2023.03.011
Citation: LIU Dong. Current situation and development of key equipment and technology of new generation launch vehicle body system[J]. Manufacturing Technology & Machine Tool, 2023, (3): 85-93. doi: 10.19287/j.mtmt.1005-2402.2023.03.011

Current situation and development of key equipment and technology of new generation launch vehicle body system

doi: 10.19287/j.mtmt.1005-2402.2023.03.011
  • Received Date: 2022-12-18
  • Accepted Date: 2023-01-18
  • Launch vehicles are the main means for a country to enter space, and its manufacturing level is crucial to the process of controlling space. As the main part of the launch vehicle, the structure of the rocket body is the key to rocket manufacturing. After decades of development, the rocket body manufacturing technology has gradually shifted from a manual operation-based model to a green and automated technology-based model. According to the manufacturing situation of the rocket body structure at home and abroad, this article gives a detailed introduction to the key technologies and equipment in the rocket body structure manufacturing process, including sheet metal forming, milling processing, drilling and riveting, welding and rocket body docking. The main process summarizes the domestic and foreign gaps and application difficulties of related technologies, and provides a reference for the development of my country's launch vehicle rocket body structure manufacturing level.

     

  • loading
  • [1]
    孟光. 数控机床专项航天领域实施成效与展望[J]. 高档数控机床与基础制造装备, 2019(1).
    [2]
    姚君山, 蔡益飞, 李程刚. 运载火箭箭体结构制造技术发展与应用[J]. 航空制造技术, 2007(10): 36-40,42.
    [3]
    周磊, 杨国平, 刘凤财, 等. 超大直径贮箱箱底整体旋压成形技术[J]. 锻压技术, 2021, 46(3): 151-157.
    [4]
    赵俊伟. 大吨位充液拉深成形控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [5]
    合肥合锻. 国际首次成形运载火箭大规格燃料贮箱薄壁整体箱底[J]. 锻压装备与制造技术, 2018, 53(6): 6.
    [6]
    郝云飞, 王国庆, 周庆, 等. 运载火箭铝合金贮箱全搅拌摩擦焊接工艺及应用[J]. 宇航材料工艺, 2016, 46(6): 11-20.
    [7]
    王国辉, 曾杜娟, 刘观日, 等. 中国下一代运载火箭结构技术发展方向与关键技术分析[J]. 宇航总体技术, 2021, 5(5): 1-11.
    [8]
    Salmi B. 3D—printing a rocket: I'll never forget the first time I saw a rocket materialize before my eyes[J]. IEEE Spectrum, 2019, 56(11): 22-29. doi: 10.1109/MSPEC.2019.8889969
    [9]
    Dudas J H. Preventing weld cracks in high strength aluminum alloys[J]. Welding Journal, 1966, 45(6): 241-249.
    [10]
    Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365-369. doi: 10.1038/nature23894
    [11]
    Rubio A, Calleja L, Orive J, et al. Flexible machining system for an efficient skin machining[C]. SAE 2016 Aerospace Manufacturing and Automated Fastening Conference & Exhibition.
    [12]
    向兵飞, 黄晶, 许家明, 等. 蒙皮铣削镜像顶撑技术研究[J]. 制造技术与机床, 2015(4): 92-96.
    [13]
    Dong H Q, Ji Y L, Wang X Z, et al. Stability analysis of thin-walled parts end milling considering cutting depth regeneration effect[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(11-12): 1-10.
    [14]
    Bi Q Z, Huang N D, Zhang S K, et al. Adaptive machining for curved contour on deformed large skin based on on-machine measurement and isometric mapping[J]. International Journal of Machine Tools and Manufacture, 2019, 136: 34-44. doi: 10.1016/j.ijmachtools.2018.09.001
    [15]
    梁莹, 李宇昊, 朱迅强, 等. 大型薄壁舱体的自动钻铆技术研究[J]. 航天制造技术, 2013, 10(5): 38-42.
    [16]
    章茂云, 侯东旭, 孙立强, 等. 运载火箭筒体壳段自动钻铆技术研究[J]. 航空精密制造技术, 2018, 54(5): 36-39.
    [17]
    申林远, 曹宇, 刘东平, 等. 运载火箭舱段壁板自动钻铆技术应用研究[J]. 航天制造技术, 2018, 211(5): 25-28.
    [18]
    喻龙, 章易镰, 王宇晗, 等. 飞机自动钻铆技术研究现状及其关键技术[J]. 航空制造技术, 2017(9): 16-25.
    [19]
    Christopher Chaffardon. Tanks and structures for the newAriane 6[C]. 69th International Astronautical Congress(IAC).
    [20]
    叶顺坚, 梁莹, 石正波, 等. 自动钻铆技术在某运载火箭助推模块箱间段研制中的应用[J]. 上海航天, 2014, 31(S1): 15-19.
    [21]
    王珉, 陈文亮, 郝鹏飞, 等. 飞机数字化自动钻铆系统及其关键技术[J]. 航空制造技术, 2013(1): 80-83. doi: 10.3969/j.issn.1671-833X.2013.01.024
    [22]
    鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 3(3): 5-12.
    [23]
    柯黎明, 邢丽, 刘鸽平. 搅拌摩擦焊工艺及其应用[J]. 焊接技术, 2000, 29(2): 7-8.
    [24]
    相倩, 吕念春, 薛鹏, 等. 铝-钢异种金属搅拌摩擦焊研究现状及展望[J]. 机械工程学报, 2017, 53(20): 28-37.
    [25]
    Chen G Q, Ma Q X, Zhang S, et al. Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions[J]. Journal of Materials Science & Technology, 2018, 34(1): 128-134.
    [26]
    Aziz S B, Dewan M W D, Huggett D J, et al. A fully coupled thermomechanical model of friction stir welding(FSW) and numerical studies on process parameters of lightweight aluminum alloy joints[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(1): 1-18. doi: 10.1007/s40195-017-0658-4
    [27]
    王亮, 李东升, 张俐, 等. 数字化测量技术及系统在飞机装配中的应用[J]. 航空制造技术, 2011(21): 72-75. doi: 10.3969/j.issn.1671-833X.2011.21.014
    [28]
    李强, 张志博, 申定贤, 等. 新一代大型运载火箭总装数字化对接技术综述[J]. 科技与创新, 2019(4): 100-101.
    [29]
    王皓, 陈根良, 黄顺舟, 等. 面向最优匹配位置的大部件自动对接装配综合评价指标[J]. 机械工程学报, 2017, 53(23): 137-146.
    [30]
    郭峰. 运载火箭多功能对接架车研究[J]. 电子机械工程, 2020, 36(3): 53-56.
    [31]
    Yao R, Tang X Q, Wang J S, et al. Dimensional optimization design of the four-cable-driven parallel manipulator in FAST[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 932-941.
    [32]
    熊占兵, 马康, 毕海娟, 等. 大型运载火箭部段自动对接装备及工艺流程设计[J]. 导弹与航天运载技术, 2021(5): 122-127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (264) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return