Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHANG Zhen, ZHANG Hui, BAO Boyi, LI Jun. Research of propeller blade measurement device and quality assessment technology[J]. Manufacturing Technology & Machine Tool, 2023, (6): 139-145. doi: 10.19287/j.mtmt.1005-2402.2023.06.023
Citation: ZHANG Zhen, ZHANG Hui, BAO Boyi, LI Jun. Research of propeller blade measurement device and quality assessment technology[J]. Manufacturing Technology & Machine Tool, 2023, (6): 139-145. doi: 10.19287/j.mtmt.1005-2402.2023.06.023

Research of propeller blade measurement device and quality assessment technology

doi: 10.19287/j.mtmt.1005-2402.2023.06.023
  • Received Date: 2023-03-07
  • Accepted Date: 2023-04-07
  • The propeller blade is a key component in industrial applications. The shape of this surface often contains multiple complex surfaces, and the traditional measurement methods have defects of accuracy and timeliness. To address this problem, a quality assessment method of regional feature difference facing multi-faceted surfaces is proposed based on an automatic propeller blade measurement device. Firstly, the measurement device is constructed and the simulation attributes are designed based on mechatronic platform. Secondly, a regional energy clustering segmentation method driven by feature vector is proposed. The problem of multi-faceted concentration on the propeller blade surface is solved by segmenting the surface measurement region. Then, the local optimal measurement points are extracted based on segmentation regions and the layout of measurement point is also planned based on segmentation regions. Then, the non-linear regional accuracy difference hierarchical alignment method is proposed. The method achieves the positional transformation by hierarchical alignment through differences in accuracy between measurement regions, and the algorithm efficiency is optimized by combining non-linear calculation to achieve fast and efficient quality assessment. Finally, the feasibility of the method is verified by joint simulation and physical test.

     

  • loading
  • [1]
    张震, 张辉, 王玉, 等. 螺旋桨检测机电一体化建模仿真技术研究[J]. 制造技术与机床, 2022(5): 134-140.
    [2]
    张现东, 卜昆, 董一巍. 航空发动机叶片三坐标测量优化采样方法[J]. 航空动力学报, 2019, 34(1): 168-176. doi: 10.13224/j.cnki.jasp.2019.01.019
    [3]
    曾艳. 大型螺旋桨数控加工的在线测量与余量计算研究[D]. 武汉: 华中科技大学, 2005.
    [4]
    郑国祥, 郑文宇, 李春光. 5G+智能检测在船用螺旋桨检测上的方法研究[J]. 中国计量, 2020, 43(5): 125.
    [5]
    张明豪, 郑妍, 陈徐兵, 等. 螺旋桨叶面加工误差在线测量及补偿[J]. 组合机床与自动化加工技术, 2019, 50(3): 94-97.
    [6]
    Li S Z. Adaptive sampling and mesh generation[J]. Computer-Aided Design, 1995, 27(3): 235-240. doi: 10.1016/0010-4485(95)95872-C
    [7]
    蔺小军, 单晨伟, 王增强, 等. 航空发动机叶片型面三坐标测量机测量技术[J]. 计算机集成制造系统, 2012, 18(1): 125-131.
    [8]
    李斌, 孙忠林, 彭芳瑜, 等. 叶片零件在线检测测点规划问题研究[J]. 中国机械工程, 2008, 29(5): 540-542,546. doi: 10.3321/j.issn:1004-132X.2008.05.009
    [9]
    张明德, 罗冲, 张卫青, 等. 航发叶片的测量数据误差处理方法研究[J]. 组合机床与自动化加工技术, 2017(1): 57-61.
    [10]
    魏效玲, 孟艺, 孙秀军. 损伤零件点云模型配准的ICP算法[J]. 制造技术与机床, 2020(5): 118-121. doi: 10.19287/j.cnki.1005-2402.2020.05.022
    [11]
    Zhang X C, Zhang H, He X Y, et al. Fast evaluation of minimum zone form error of freeform NURBS surfaces[J]. Procedia CIRP, 2015, 27(7): 23-28.
    [12]
    赵林, 吴双, 张可义, 等. 基于NX MCD的堆垛机机电概念设计[J]. 制造业自动化, 2021, 43(11): 114-116. doi: 10.3969/j.issn.1009-0134.2021.11.026
    [13]
    Lu Z, Jiang X, Huo G, et al. A fast T-spline fitting method based on efficient region segmentation[J]. Computational and Applied Mathematics, 2020, 39(2): 1-19.
    [14]
    Li B, Schnabel R, Klein R, et al. Robust normal estimation for point clouds with sharp features[J]. Computers& Graphics, 2010, 34(2): 94-106.
    [15]
    全国船用机械标准化技术委员会.GB/T 12916-2010, 船用金属螺旋桨技术条件[S].北京: 标准出版社,2010.
    [16]
    Fitzgibbon A W. Robust registration of 2D and 3D point sets[J]. Image and Vision Computing, 2003, 21(13): 1145-1153.
    [17]
    Xu S Y, Zhu J H, Li Y C, et al. Effective scaling registration approach by imposing emphasis on scale factor[J]. Electronics Letters, 2018, 54(7): 422-424. doi: 10.1049/el.2017.4583
    [18]
    鲁铁定, 袁志聪, 郑坤. 结合尺度不变特征的Super 4PCS点云配准方法[J]. 遥感信息, 2019, 34(5): 15-20. doi: 10.3969/j.issn.1000-3177.2019.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (72) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return