Issue 6
Jun.  2023
Turn off MathJax
Article Contents
YE Xinna, LI Shanshan, YUAN Hongchuan. Ultrasonic vibration laser cutting tungsten alloy surface quality evaluation test[J]. Manufacturing Technology & Machine Tool, 2023, (6): 162-166. doi: 10.19287/j.mtmt.1005-2402.2023.06.027
Citation: YE Xinna, LI Shanshan, YUAN Hongchuan. Ultrasonic vibration laser cutting tungsten alloy surface quality evaluation test[J]. Manufacturing Technology & Machine Tool, 2023, (6): 162-166. doi: 10.19287/j.mtmt.1005-2402.2023.06.027

Ultrasonic vibration laser cutting tungsten alloy surface quality evaluation test

doi: 10.19287/j.mtmt.1005-2402.2023.06.027
  • Received Date: 2023-01-01
  • Accepted Date: 2023-04-07
  • Ultrasonic vibration cutting tests were carried out on 90W-7Ni-3Fe alloy and the influencing factors of surface integrity were analyzed. The microstructure morphology, surface structure, residual stress, roughness, surface hardness and crystal dislocation density of the workpiece were studied by experiments. The results show that the ultrasonic vibration cutting method has a smaller roughness than the conventional cutting mode, which has a significant restraining effect on furrows and scales, and has a smaller roughness of workpiece surface, and significantly improves the machining quality. When the same workpiece is cut, the tungsten phase and the bonded phase are located in the metamorphosed layer in the sub-surface region. The thickness of the tungsten phase metamorphosed layer is up to 400 nm, and the thickness of the bonded phase metamorphosed layer is up to 1 μm. The dislocation density of workpiece surface obtained by ultrasonic vibration cutting is relative to conventional cutting. Compared with the matrix hardness, the surface hardness of the samples cut by UEVC and CC is significantly increased, and the surface hardening of the samples cut by ultrasonic is more obvious. The higher residual stress is formed by ultrasonic vibration.

     

  • loading
  • [1]
    林洁琼, 闫东, 卢明明, 等. 超声振动辅助切削三维SiCp/Al复合材料温度仿真研究[J]. 制造技术与机床, 2023(1): 36-43.
    [2]
    刘文胜, 唐芳, 马运柱, 等. 微量Cr 对93W-Ni-Fe合金组织及力学性能的影响[J]. 中国有色金属学报, 2008, 18(9): 1645-1650.
    [3]
    殷振, 朱健, 李华, 等. 模态转换超声振动换能器在精密加工中的研究进展[J]. 制造技术与机床, 2021(12): 37-43,51.
    [4]
    姜颢天, 靳刚, 秦娜, 等. 基于电塑性效应的钨合金铣削试验研究[J]. 塑性工程学报, 2022, 29(8): 123-130.
    [5]
    康仁科, 宋鑫, 董志刚, 等. 钨合金超声椭圆振动切削表面完整性研究[J]. 表面技术, 2021, 50(11): 321-328.
    [6]
    杭华, 林靖朋. 超声振动与微量润滑耦合切削Inconel718的性能研究[J]. 智能计算机与应用, 2020, 10(5): 248-250.
    [7]
    Pan Y N, Kang R K, Dong Z G, et al. On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31: 1-11. doi: 10.1007/s10845-019-01527-3
    [8]
    Zhang X Q, Senthil Kumar A, Rahman M, et al. Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools[J]. Journal of Materials Processing Technology, 2011, 211(11): 1701-1709. doi: 10.1016/j.jmatprotec.2011.05.015
    [9]
    姜山, 李杰, 陈瑶. 激光烧结钨基合金组织性能研究[J]. 粉末冶金技术, 2020, 38(5): 344-349.
    [10]
    范景莲, 丁飞, 曾毅, 等. 95W-3.5Ni-1.5Fe 合金高温性能、组织及断裂机制[J]. 稀有金属材料与工程, 2011, 40(12): 2121-2124.
    [11]
    甘杰, 何林, 李强, 等. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(S1): 304-306.
    [12]
    Nandam S R, Ravikiran U, Rao A A. Machining of tungsten heavy alloy under cryogenic environment[J]. Procedia Materials Science, 2014, 6: 296-303. doi: 10.1016/j.mspro.2014.07.037
    [13]
    张燕, 夏志辉, 徐东鸣. PCBN刀具高速精密切削W-Ni-Fe合金的性能研究[J]. 粉末冶金工业, 2016, 26(6): 35-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (48) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return