Issue 5
May  2022
Turn off MathJax
Article Contents
WANG Zhiyong, MA Xuan, DU Jinjin. Surface roughness prediction for Ti-48Al-2Cr-2Nb micro-milling based on 1DCNN-LSTM neural network[J]. Manufacturing Technology & Machine Tool, 2022, (5): 128-133. doi: 10.19287/j.mtmt.1005-2402.2022.05.022
Citation: WANG Zhiyong, MA Xuan, DU Jinjin. Surface roughness prediction for Ti-48Al-2Cr-2Nb micro-milling based on 1DCNN-LSTM neural network[J]. Manufacturing Technology & Machine Tool, 2022, (5): 128-133. doi: 10.19287/j.mtmt.1005-2402.2022.05.022

Surface roughness prediction for Ti-48Al-2Cr-2Nb micro-milling based on 1DCNN-LSTM neural network

doi: 10.19287/j.mtmt.1005-2402.2022.05.022
  • Received Date: 2021-10-15
  • Surface roughness is the main index to measure the surface quality of micro machined parts. In order to improve the accuracy of surface roughness prediction in micro milling, a deep neural network prediction model based on one-dimensional convolution-long short-term memory (1DCNN-LSTM) is proposed. Using the efficient data processing mechanism of one-dimensional convolution network and the accurate prediction ability of long-term and short-term memory network, the problems of batch sequence data processing, sample key feature learning and small sample data surface roughness prediction are effectively solved. Taking spindle speed, feed speed, milling depth and micro milling cutter spiral angle as control variables, the prediction model of micro milling surface roughness is trained and verified by experimental data. The results show that compared with the traditional machine learning model, the average prediction error of 1DCNN-LSTM neural network is only 5.9%, which verifies the high-precision prediction performance of the model based on small sample data, and provides a new method for the prediction of micro-milling surface roughness.

     

  • loading
  • [1]
    Xc A, Bta B, Yan L A, et al. Dynamic recrystallization behavior of the Ti–48Al–2Cr–2Nb alloy during isothermal hot deformation[J]. Progress in Natural Science:Materials International, 2019, 29(5): 587-594. doi: 10.1016/j.pnsc.2019.08.004
    [2]
    钟斌, 焦泽辉, 郑飞, 等. 铸造Ti-48Al-2Cr-2Nb合金的热机械疲劳行为[J]. 机械强度, 2020, 42(3): 559-564.
    [3]
    Lu X H, Wang F R, Xue L, et al. Investigation of material removal rate and surface roughness using multi-objective optimization for micro-milling of inconel 718[J]. Industrial Lubrication and Tribology, 2019, 71(6): 787-794. doi: 10.1108/ILT-07-2018-0259
    [4]
    Beruvides G, Castano F, Quiza R, et al. Surface roughness modeling and optimization of tungsten-copper alloys in micro-milling processes[J]. Measurement, 2016, 86: 246-252. doi: 10.1016/j.measurement.2016.03.002
    [5]
    苏晓云, 汪建新, 辛李霞. 基于神经网络的铣削大理石表面粗糙度预测模型[J]. 表面技术, 2017, 46(8): 274-279.
    [6]
    谭芳芳, 朱俊江, 严天宏, 等. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报:工学版, 2020, 54(1): 40-47.
    [7]
    刘国梁, 余建波. 基于知识深度置信网络的加工粗糙度预测[J]. 机械工程学报, 2019, 55(20): 94-106.
    [8]
    Wang M W, Zhou J, Gao J, et al. Milling tool wear prediction method based on deep learning under variable working conditions[J]. IEEE Access, 2020, 35(99): 140726-140735.
    [9]
    何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967.
    [10]
    朱翔, 谢峰, 李楠. 基于长短期记忆神经网络的刀具磨损状态监测[J]. 制造技术与机床, 2019(10): 112-117.
    [11]
    Yang Q R, Xu K Z, Zheng X H, et al. Tool health condition recognition method for high speed milling of titanium alloy based on principal component analysis (PCA) and long short term memory (LSTM)[J]. Journal of Donghua University:English Edition, 2019, 36(4): 364-368.
    [12]
    汪立雄, 王志刚, 徐增丙, 等. 基于深度迁移学习的滚动轴承剩余使用寿命预测[J]. 制造技术与机床, 2020(12): 120-124,127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (42) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return